Publications by authors named "Thomas G Diness"

Objectives: The study investigated dual antiplatelet therapy (DAPT) patterns over time and patient characteristics associated with the various treatments in a myocardial infarction (MI) population.

Design: A registry-based observational cohort study was performed using antecedent data.

Setting: This study linked morbidity, mortality and medication data from Danish national registries.

View Article and Find Full Text PDF

Animal models of pacing-induced heart failure (HF) are often associated with high acute mortality secondary to high pacing frequencies. The present study therefore exploits lower-frequency left ventricular pacing (300 beats per minute) in rabbits for 11 weeks to produce chronic HF with low acute mortality but profound structural, functional, and electrical remodeling and compare with nonpaced controls. Pacing increased heart weight/body weight ratio and decreased left ventricular fractional shortening in tachypaced only.

View Article and Find Full Text PDF

The ionic current responsible for terminating the action potential (AP), and thereby in part determining the AP duration (APD), is the potassium current (IK), consisting of primarily two components: a rapidly (IKr) and a slowly (IKs) activating delayed rectifier potassium current. The aim of this study was to evaluate potential antiarrhythmic effects of compound induced IKs activation using the benzodiazepine L-364,373 (R-L3). Ventricular myocytes from guinea pigs were isolated and whole-cell current clamping was performed at 35 degrees C.

View Article and Find Full Text PDF

The short QT syndrome is a newly discovered pro-arrhythmic condition, which may cause ventricular fibrillation and sudden death. Short QT can originate from the apparent gain-of-function mutation N588K in the hERG potassium channel that conducts repolarising I(Kr) current. The present study describes a profound biophysical characterization of HERG-N588K revealing both loss-of-function and gain-of-function properties of the mutant.

View Article and Find Full Text PDF

Aims: Impaired repolarization in cardiac myocytes can lead to long QT syndrome (LQTS), with delayed repolarization and increased susceptibility to Torsades de Pointes (TdP) arrhythmias. Current pharmacological treatment of LQTS is often inadequate. This study sought to evaluate the antiarrhythmic effect of a novel compound (NS1643) that activates the rapid delayed-rectifier K+ current, I(Kr), in two rabbit models of acquired LQTS.

View Article and Find Full Text PDF

Within the field of new antiarrhythmic compounds, the interesting idea of activating human ether-a-go-go-related gene (HERG1) potassium channels has recently been introduced. Potentially, drugs that increase HERG1 channel activity will augment the repolarizing current of the cardiac myocytes and stabilize the diastolic interval. This may make the myocardium more resistant to events that cause arrhythmias.

View Article and Find Full Text PDF

To obtain information about a possible frequency-dependent modulation of HERG1 and hKCNQ1 channels, we performed heterologous expression in Xenopus laevis oocytes. Channel activation was obtained by voltage protocols roughly imitating cardiac action potentials at frequencies of 1, 3, 5.8, and 8.

View Article and Find Full Text PDF

The cardiac action potential is generated by a concerted action of different ion channels and transporters. Dysfunction of any of these membrane proteins can give rise to cardiac arrhythmias, which is particularly true for the repolarizing potassium channels. We suggest that an increased repolarization current could be a new antiarrhythmic principle, because it possibly would attenuate afterdepolarizations, ischemic leak currents, and reentry phenomena.

View Article and Find Full Text PDF