Surface phonon polariton (SPhP) modes in polar semiconductors offer a low-loss platform for infrared nanophotonics and sensing. However, the efficient design of polariton-enhanced sensors requires a quantitative understanding of how to engineer the frequency and lifetime of SPhPs in nanophotonic structures. Here, we study organ-pipe resonances in 4H-SiC trenches as a prototype system for infrared sensing.
View Article and Find Full Text PDFHyperbolic phonon polaritons (HPhPs) can be supported in materials where the real parts of their permittivities along different directions are opposite in sign. HPhPs offer confinements of long-wavelength light to deeply subdiffractional scales, while the evanescent field allows for interactions with substrates, enabling the tuning of HPhPs by altering the underlying materials. Yet, conventionally used noble metal and dielectric substrates restrict the tunability of this approach.
View Article and Find Full Text PDFOne of the main bottlenecks in the development of terahertz (THz) and long-wave infrared (LWIR) technologies is the limited intrinsic response of traditional materials. Hyperbolic phonon polaritons (HPhPs) of van der Waals semiconductors couple strongly with THz and LWIR radiation. However, the mismatch of photon - polariton momentum makes far-field excitation of HPhPs challenging.
View Article and Find Full Text PDFWavelength-selective absorbers (WS-absorbers) are of interest for various applications, including chemical sensing and light sources. Lithography-free fabrication of WS-absorbers can be realized via Tamm plasmon polaritons (TPPs) supported by distributed Bragg reflectors (DBRs) on plasmonic materials. While multifrequency and nearly arbitrary spectra can be realized with TPPs via inverse design algorithms, demanding and thick DBRs are required for high quality-factors (Q-factors) and/or multiband TPP-absorbers, increasing the cost and reducing fabrication error tolerance.
View Article and Find Full Text PDFThe lattice symmetry of a crystal is one of the most important factors in determining its physical properties. Particularly, low-symmetry crystals offer powerful opportunities to control light propagation, polarization and phase. Materials featuring extreme optical anisotropy can support a hyperbolic response, enabling coupled light-matter interactions, also known as polaritons, with highly directional propagation and compression of light to deeply sub-wavelength scales.
View Article and Find Full Text PDFLocalized surface phonon polaritons (LSPhPs) can be implemented to engineer light-matter interactions through nanoscale patterning for a range of midinfrared application spaces. However, the polar material systems studied to date have mainly focused on simple designs featuring a single element in the periodic unit cell. Increasing the complexity of the unit cell can serve to modify the resonant near-fields and intra- and inter-unit-cell coupling as well as to dictate spectral tuning in the far-field.
View Article and Find Full Text PDFHeterogeneity of glucose-stimulated insulin secretion (GSIS) in pancreatic islets is physiologically important but poorly understood. Here, we utilize mouse islets to determine how microtubules (MTs) affect secretion toward the vascular extracellular matrix at single cell and subcellular levels. Our data indicate that MT stability in the β-cell population is heterogenous, and that GSIS is suppressed in cells with highly stable MTs.
View Article and Find Full Text PDFWavelength-selective thermal emitters (WS-EMs) are of interest due to the lack of cost-effective, narrow-band sources in the mid- to long-wave infrared. WS-EMs can be realized via Tamm plasmon polaritons (TPPs) supported by distributed Bragg reflectors on metals. However, the design of multiple resonances is challenging as numerous structural parameters must be optimized simultaneously.
View Article and Find Full Text PDFThe mid-infrared (MIR) is an exciting spectral range that also hosts useful molecular vibrational fingerprints. There is a growing interest in nanophotonics operating in this spectral range, and recent advances in plasmonic research are aimed at enhancing MIR infrared nanophotonics. In particular, the design of hybrid plasmonic metasurfaces has emerged as a promising route to realize novel MIR applications.
View Article and Find Full Text PDFThe hyperbolic phonon polaritons supported in hexagonal boron nitride (hBN) with long scattering lifetimes are advantageous for applications such as super-resolution imaging via hyperlensing. Yet, hyperlens imaging is challenging for distinguishing individual and closely spaced objects and for correlating the complicated hyperlens fields with the structure of an unknown object underneath. Here, we make significant strides to overcome each of these challenges.
View Article and Find Full Text PDFHyperbolic phonon polaritons (HPhPs) enable strong confinements, low losses, and intrinsic beam steering capabilities determined by the refractive index anisotropy-providing opportunities from hyperlensing to flat optics and other applications. Here, two scanning-probe techniques, photothermal induced resonance (PTIR) and scattering-type scanning near-field optical microscopy (s-SNOM), are used to map infrared HPhPs in large (up to near-monoisotopic ) hexagonal boron nitride (hBN) flakes. Wide PTIR and s-SNOM scans on such large flakes avoid interference from polaritons launched from different asperities (edges, folds, surface defects, etc.
View Article and Find Full Text PDFStrong coupling between optical modes can be implemented into nanophotonic design to modify the energy-momentum dispersion relation. This approach offers potential avenues for tuning the thermal emission frequency, line width, polarization, and spatial coherence. Here, we employ three-mode strong coupling between propagating and localized surface phonon polaritons, with zone-folded longitudinal optic phonons within periodic arrays of 4H-SiC nanopillars.
View Article and Find Full Text PDFSilicon waveguides have enabled large-scale manipulation and processing of near-infrared optical signals on chip. Yet, expanding the bandwidth of guided waves to other frequencies will further increase the functionality of silicon as a photonics platform. Frequency multiplexing by integrating additional architectures is one approach to the problem, but this is challenging to design and integrate within the existing form factor due to scaling with the free-space wavelength.
View Article and Find Full Text PDFThe anisotropy of hexagonal boron nitride (hBN) gives rise to hyperbolic phonon-polaritons (HPhPs), notable for their volumetric frequency-dependent propagation and strong confinement. For frustum (truncated nanocone) structures, theory predicts five, high-order HPhPs, sets, but only one set was observed previously with far-field reflectance and scattering-type scanning near-field optical microscopy. In contrast, the photothermal induced resonance (PTIR) technique has recently permitted sampling of the full HPhP dispersion and observing such elusive predicted modes; however, the mechanism underlying PTIR sensitivity to these weakly-scattering modes, while critical to their understanding, has not yet been clarified.
View Article and Find Full Text PDFExploiting polaritons in natural vdW materials has been successful in achieving extreme light confinement and low-loss optical devices and enabling simplified device integration. Recently, α-MoO has been reported as a semiconducting biaxial vdW material capable of sustaining naturally orthogonal in-plane phonon polariton modes in IR. In this study, we investigate the polarization-dependent optical characteristics of cavities formed using α-MoO to extend the degrees of freedom in the design of IR photonic components exploiting the in-plane anisotropy of this material.
View Article and Find Full Text PDFThe biaxial van der Waals semiconductor α-phase molybdenum trioxide (α-MoO ) has recently received significant attention due to its ability to support highly anisotropic phonon polaritons (PhPs)-infrared (IR) light coupled to lattice vibrations-offering an unprecedented platform for controlling the flow of energy at the nanoscale. However, to fully exploit the extraordinary IR response of this material, an accurate dielectric function is required. Here, the accurate IR dielectric function of α-MoO is reported by modeling far-field polarized IR reflectance spectra acquired on a single thick flake of this material.
View Article and Find Full Text PDFThere are a broad range of applications for narrowband long-wave infrared (LWIR) sources, especially within the 8-12 μm atmospheric window. These include infrared beacons, free-space communications, spectroscopy, and potentially on-chip photonics. Unfortunately, commercial light-emitting diode (LED) sources are not available within the LWIR, leaving only gas-phase and quantum cascade lasers, which exhibit low wall-plug efficiencies and in many cases require large footprints, precluding their use for many applications.
View Article and Find Full Text PDFHyperbolic phonon polaritons (HPhPs) are generated when infrared photons couple to polar optic phonons in anisotropic media, confining long-wavelength light to nanoscale volumes. However, to realize the full potential of HPhPs for infrared optics, it is crucial to understand propagation and loss mechanisms on substrates suitable for applications from waveguiding to infrared sensing. We employ scattering-type scanning near-field optical microscopy (s-SNOM) and nano-Fourier transform infrared (FTIR) spectroscopy, in concert with analytical and numerical calculations, to elucidate HPhP characteristics as a function of the complex substrate dielectric function.
View Article and Find Full Text PDFPolaritonic materials that support epsilon-near-zero (ENZ) modes offer the opportunity to design light-matter interactions at the nanoscale through extreme subwavelength light confinement, producing phenomena like resonant perfect absorption. However, the utility of ENZ modes in nanophotonic applications has been limited by a flat spectral dispersion, which leads to small group velocities and extremely short propagation lengths. Here, we overcome this constraint by hybridizing ENZ and surface plasmon polariton (SPP) modes in doped cadmium oxide epitaxial bilayers.
View Article and Find Full Text PDFGap surface plasmons (GSPs) serve a diverse range of plasmonic applications, including energy harvesting, communications, molecular sensing, and optical detection. GSPs may be realized where tightly spaced plasmonic structures exhibit strong spatial overlap between the evanescent fields. We demonstrate that within similar, nested geometries that the near-fields of the GSPs within the individual nanostructures are hybridized.
View Article and Find Full Text PDFWe report the first observation of epsilon-near-zero (ENZ) phonon polaritons in an ultrathin AlN film fully hybridized with surface phonon polaritons (SPhP) supported by the adjacent SiC substrate. Employing a strong coupling model for the analysis of the dispersion and electric field distribution in these hybridized modes, we show that they share the most prominent features of the two precursor modes. The novel ENZ-SPhP coupled polaritons with a highly propagative character and deeply subwavelength light confinement can be utilized as building blocks for future infrared and terahertz nanophotonic integration and communication devices.
View Article and Find Full Text PDFTerahertz (THz) coherent detectors are crucial for the stabilization and measurement of the properties of quantum cascade lasers (QCLs). This paper describes the exploitation of intra-cavity sum frequency generation to up-convert the emission of a THz QCL to the near infrared for detection with fiber optic coupled components alone. Specifically, a low cost infrared photodiode is used to detect a radio frequency (RF) signal with a signal-to-noise ratio of approximately 20dB, generated by beating the up-converted THz wave and a near infrared local oscillator.
View Article and Find Full Text PDFAperiodic lattices are a promising route to achieving tunable or multi-frequency lasing, but their threshold spectrum remains largely unstudied. We find that holographically designed aperiodic lattices can possess a multimode spectral response, containing both defect and band-edge photonic states. Under the influence of facet feedback the aperiodic lattice maintains remarkable spectral control at multiple frequencies over a wide bandwidth.
View Article and Find Full Text PDF