Risk prediction models have a key role in stratified disease prevention, and the incorporation of genomic data into these models promises more effective personalisation. Although the clinical utility of incorporating genomic data into risk prediction tools is increasingly compelling, at least for some applications and disease types, the legal and regulatory implications have not been examined and have been overshadowed by discussions about clinical and scientific utility and feasibility. We held a workshop to explore relevant legal and regulatory perspectives from four EU Member States: France, Germany, the Netherlands and the UK.
View Article and Find Full Text PDFThe basolateral amygdala (BLA) is the major amygdaloid nucleus distributed with mu opioid receptors. The afferent input from the BLA to the central nucleus of the amygdala (CeA) is considered important for opioid analgesia. However, little is known about the effect of mu opioids on synaptic transmission in the BLA.
View Article and Find Full Text PDFOpioids are potent analgesics, but the sites of their action and cellular mechanisms are not fully understood. The central nucleus of the amygdala (CeA) is important for opioid analgesia through the projection to the periaquaductal gray (PAG). In this study, we examined the effects of mu opioid receptor stimulation on inhibitory and excitatory synaptic inputs to PAG-projecting CeA neurons retrogradely labeled with a fluorescent tracer injected into the ventrolateral PAG of rats.
View Article and Find Full Text PDFThe rostral ventromedial medulla (RVM) is a major locus for the descending control of nociception and opioid analgesia. However, it is not clear how opioids affect synaptic inputs to RVM neurons. In this study, we determined the effect of mu-opioid receptor activation on excitatory and inhibitory synaptic transmission in spinally projecting RVM neurons.
View Article and Find Full Text PDFIn the paraventricular nucleus (PVN) of the hypothalamus, nitric oxide (NO) inhibits sympathetic outflow through increased GABA release. However, the signal transduction pathways involved in its action remain unclear. In the present study, we determined the role of cGMP, soluble guanylyl cyclase, and protein kinase G in the potentiating effect of NO on synaptic GABA release to spinally projecting PVN neurones.
View Article and Find Full Text PDF