Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium.
View Article and Find Full Text PDFThe bile salt export pump protein (BSEP), expressed on the canalicular membranes of hepatocytes, is primarily responsible for the biliary excretion of bile salts. The inhibition of BSEP transport activity can lead to an increase in intracellular bile salt levels and liver injury. This review discusses the various in vitro assays currently available for assessing the effect of drugs or other chemical entities to modulate BSEP transport activity.
View Article and Find Full Text PDFChem Res Toxicol
October 2015
MDR3 dysfunction is associated with liver diseases. We report here a novel MDR3 activity assay involving in situ biosynthesis in primary hepatocytes of deuterium (d9)-labeled PC and LC-MS/MS determination of transported extracellular PC-d9. Several drugs associated with DILI such as chlorpromazine, imipramine, itraconazole, haloperidol, ketoconazole, sequinavir, clotrimazole, ritonavir, and troglitazone inhibit MDR3 activity.
View Article and Find Full Text PDFTroglitazone (TGZ), the first glitazone used for the treatment of type II diabetes mellitus and removed from the market for liver toxicity, was shown to bind covalently to microsomal protein and glutathione (GSH) following activation by cytochrome P450 (P450). The covalent binding of (14)C-TGZ in dexamethasone-induced rat liver microsomes was NADPH-dependent and required the active form of P450; it was completely inhibited by ketoconazole (10 microM) and GSH (4 mM). The covalent binding in P450 3A4 Supersomes (9.
View Article and Find Full Text PDFTroglitazone (TGZ) was the first glitazone used for the treatment of type II diabetes mellitus. TGZ undergoes an oxidative chroman ring-opening reaction to form a quinone product. Recently, cytochrome P450 (P450) was shown to be able to catalyze the formation of TGZ quinone.
View Article and Find Full Text PDF