Publications by authors named "Thomas F Limero"

Introduction: NASA regularly performs ground-based offgas tests (OGTs), which allow prediction of accumulated volatile pollutant concentrations at first entry on orbit, on whole modules and vehicles scheduled to connect to the International Space Station (ISS). These data guide crew safety operations and allow for estimation of ISS air revitalization systems impact from additional pollutant load. Since volatiles released from vehicle, module, and payload materials can affect crew health and performance, prediction of first ingress air quality is important.

View Article and Find Full Text PDF

Low molecular weight polar organics are commonly observed in spacecraft environments. Increasing concentrations of one or more of these contaminants can negatively impact Environmental Control and Life Support (ECLS) systems and/or the health of crew members, posing potential risks to the success of manned space missions. Ambient plasma ionization mass spectrometry (MS) is finding effective use as part of the analytical methodologies being tested for next-generation space module environmental analysis.

View Article and Find Full Text PDF

In the history of manned spaceflight, environmental monitoring has relied heavily on archival sampling. However, with the construction of the International Space Station (ISS) and the subsequent extension in mission duration up to one year, an enhanced, real-time method for environmental monitoring is necessary. The station air is currently monitored for trace volatile organic compounds (VOCs) using gas chromatography-differential mobility spectrometry (GC-DMS) via the Air Quality Monitor (AQM), while water is analyzed to measure total organic carbon and biocide concentrations using the Total Organic Carbon Analyzer (TOCA) and the Colorimetric Water Quality Monitoring Kit (CWQMK), respectively.

View Article and Find Full Text PDF

The development of a direct analysis in real time-mass spectrometry (DART-MS) method and first prototype vaporizer for the detection of low molecular weight (∼30-100 Da) contaminants representative of those detected in water samples from the International Space Station is reported. A temperature-programmable, electro-thermal vaporizer (ETV) was designed, constructed, and evaluated as a sampling interface for DART-MS. The ETV facilitates analysis of water samples with minimum user intervention while maximizing analytical sensitivity and sample throughput.

View Article and Find Full Text PDF