Publications by authors named "Thomas Ertveldt"

Article Synopsis
  • - The study investigates the effectiveness of targeted radionuclide therapy (TRT) using FAP-targeted sdAbs (4AH29) in a lung cancer mouse model, examining both the treatment's biodistribution and its therapeutic outcomes when combined with PD-L1 immune checkpoint blockade.
  • - Results indicated significant tumor uptake of the therapies, with improved survival rates in treated mice compared to those receiving only the vehicle solution, and increased PD-L1 expression in tumors after treatment.
  • - The combination of high-dose [Ac]Ac-DOTA-4AH29 TRT with PD-L1 ICB showed enhanced therapeutic synergy, suggesting a promising approach for treating aggressive tumors.
View Article and Find Full Text PDF

Background: Radiofluorination of single domain antibodies (sdAbs) via N-succinimidyl-4-[F]fluorobenzoate ([F]SFB) has shown to be a promising strategy in the development of sdAb-based PET tracers. While automation of the prosthetic group (PG) [F]SFB production, has been successfully reported, no practical method for large scale sdAb labelling has been reported. Therefore, we optimized and automated the PG production, enabling a subsequently efficient manual conjugation reaction to an anti-fibroblast activation protein (FAP)-α sdAb (4AH29) and an anti-folate receptor (FR)-α sdAb (2BD42).

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) targeting the immune checkpoint axis, which contains the programmed cell death protein-1 (PD-1) and its ligand PD-L1, revolutionized the field of oncology. Unfortunately, the large size of mAbs and the presence of an Fc fraction limit their tumor penetrative capacities and support off-target effects, potentially resulting in unresponsive patients and immune-related adverse events (irAEs) respectively. Single-domain antibodies (sdAbs) are ten times smaller than conventional mAbs and represent an emerging antibody subclass that has been proposed as next generation immune checkpoint inhibitor (ICI) therapeutics.

View Article and Find Full Text PDF

Blockade of the immune checkpoint axis consisting of programmed death-1 (PD-1) and its ligand PD-L1 alleviates the functional inhibition of tumor-infiltrating lymphoid cells yet weakly induces their expansion. Exogenous cytokines could further expand lymphoid cells and thus synergize with αPD-L1 therapy. However, systemic delivery of most cytokines causes severe toxicity due to unspecific expansion of immune cells in the periphery.

View Article and Find Full Text PDF

Although promising responses are obtained in patients treated with immune checkpoint inhibitors targeting programmed death ligand 1 (PD-L1) and its receptor programmed death-1 (PD-1), only a fraction of patients benefits from this immunotherapy. Cancer vaccination may be an effective approach to improve the response to immune checkpoint inhibitors anti-PD-L1/PD-1 therapy. However, there is a lack of research on the dynamics of PD-L1 expression in response to cancer vaccination.

View Article and Find Full Text PDF

Introduction: T cell Ig and ITIM domain receptor (TIGIT) is a next-generation immune checkpoint predominantly expressed on activated T cells and NK cells, exhibiting an unfavorable prognostic association with various malignancies. Despite the emergence of multiple TIGIT-blocking agents entering clinical trials, only a fraction of patients responded positively to anti-TIGIT therapy. Consequently, an urgent demand arises for noninvasive techniques to quantify and monitor TIGIT expression, facilitating patient stratification and enhancing therapeutic outcomes.

View Article and Find Full Text PDF

The precise delivery of cytotoxic radiation to cancer cells through the combination of a specific targeting vector with a radionuclide for targeted radionuclide therapy (TRT) has proven valuable for cancer care. TRT is increasingly being considered a relevant treatment method in fighting micro-metastases in the case of relapsed and disseminated disease. While antibodies were the first vectors applied in TRT, increasing research data has cited antibody fragments and peptides with superior properties and thus a growing interest in application.

View Article and Find Full Text PDF

Targeted radionuclide therapy (TRT) using targeting moieties labeled with α-particle-emitting radionuclides (α-TRT) is an intensely investigated treatment approach as the short range of α-particles allows effective treatment of local lesions and micrometastases. However, profound assessment of the immunomodulatory effect of α-TRT is lacking in literature. Using flow cytometry of tumors, splenocyte restimulation, and multiplex analysis of blood serum, we studied immunologic responses ensuing from TRT with an antihuman CD20 single-domain antibody radiolabeled with Ac in a human CD20 and ovalbumin expressing B16-melanoma model.

View Article and Find Full Text PDF

Cancer is a heterogeneous disease, requiring treatment tailored to the unique phenotype of the patient's tumor. Monoclonal antibodies (mAbs) and variants thereof have enabled targeted therapies to selectively target cancer cells. Cancer cell-specific mAbs have been used for image-guided surgery and targeted delivery of radionuclides or toxic agents, improving classical treatment strategies.

View Article and Find Full Text PDF

Targeted radionuclide therapy (TRT) using probes labeled with Lutetium-177 (177Lu) represents a new and growing type of cancer therapy. We studied immunologic changes in response to TRT with 177Lu labeled anti-human CD20 camelid single domain antibodies (sdAb) in a B16-melanoma model transfected to express human CD20, the target antigen, and ovalbumin, a surrogate tumor antigen. High-dose TRT induced melanoma cell death, calreticulin exposure, and ATP-release in vitro.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) of the PD-1 pathway revolutionized the survival forecast for advanced non-small cell lung cancer (NSCLC). Yet, the majority of PD-L1 NSCLC patients are refractory to anti-PD-L1 therapy. Recent observations indicate a pivotal role for the PD-L1 tumor-infiltrating myeloid cells in therapy failure.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a hematological malignancy characterized by the presence of clonal plasma cells in the bone marrow niche. Despite significant therapeutic advances, MM remains incurable for the majority of patients. Targeted radionuclide therapy (TRNT) has emerged as a promising treatment option to eradicate residual cancer cells.

View Article and Find Full Text PDF

Monoclonal antibodies that target the inhibitory immune checkpoint axis consisting of programmed cell death protein 1 (PD-1) and its ligand, PD-L1, have changed the immune-oncology field. We identified K2, an anti-human PD-L1 single-domain antibody fragment, that can enhance T cell activation and tumor cell killing. In this study, the potential of different K2 formats as immune checkpoint blocking medicines was evaluated using a gene-based delivery approach.

View Article and Find Full Text PDF

Recent advances in the field of immune-oncology led to the discovery of next-generation immune checkpoints (ICPs). Lymphocyte activation gene-3 (LAG-3), being the most widely studied among them, is being explored as a target for the treatment of cancer patients. Several antagonistic anti-LAG-3 antibodies are being developed and are prime candidates for clinical application.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkkur3tsq5ivvskh8b7r3bs9g6p5chdlc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once