Publications by authors named "Thomas Erker"

Na-K-2Cl cotransporter isoform 1 (NKCC1) is important in regulating intracellular K and Cl homeostasis and cell volume. In this study, we investigated a role of NKCC1 in regulating glioma K influx and proliferation in response to apoptosis inducing chemotherapeutic drug temozolomide (TMZ). The efficacy of a new bumetanide (BMT)-derivative NKCC1 inhibitor STS66 [3-(butylamino)-2-phenoxy-5-[(2, 2, 2-trifluoroethylamino) methyl] benzenesulfonamide] in blocking NKCC1 activity was compared with well-established NKCC1 inhibitor BMT.

View Article and Find Full Text PDF

Epilepsies represent one of the most common neurological diseases worldwide. They are characterized by recurrent spontaneous seizures with severe impact on a patient's life. An imbalance in excitatory and inhibitory signalling is considered the main underlying pathophysiological mechanism.

View Article and Find Full Text PDF

Temporal lobe epilepsy (TLE) is the most common type of focal epilepsies, affecting approximately 35 million people worldwide. Despite the introduction of numerous novel antiepileptic drugs during the last decades, the proportion of patients with therapy-resistant TLE is still high. As an impaired cellular chloride homeostasis appears involved in disease pathophysiology, bumetanide, an antagonist to Na-K-Cl cotransporters, gained interest as potential therapeutic option.

View Article and Find Full Text PDF

Background and Purpose- Inhibition of brain NKCC1 (Na-K-Cl cotransporter 1) with bumetanide (BMT) is of interest in ischemic stroke therapy. However, its poor brain penetration limits the application. In this study, we investigated the efficacy of 2 novel NKCC1 inhibitors, a lipophilic BMT prodrug STS5 (2-(Dimethylamino)ethyl 3-(butylamino)-4-phenoxy-5-sulfamoyl-benzoate;hydrochloride) and a novel NKCC1 inhibitor STS66 (3-(Butylamino)-2-phenoxy-5-[(2,2,2-trifluoroethylamino)methyl]benzenesulfonamide), on reducing ischemic brain injury.

View Article and Find Full Text PDF

It has been shown previously that molecules built on benzanilide and thiobenzanilide scaffolds possess differential biological properties including selective anticancer activity. In our previous study, we examined the cytotoxic activity and mechanism of action of the thiobenzanilide derivative N,N'-(1,2-phenylene)bis3,4,5-trifluorobenzothioamide (63 T) as a potential chemotherapeutic compound in an experimental model employing A549 lung adenocarcinoma cells and CCD39Lu non-tumorigenic lung fibroblasts. Since the results suggested oxidative stress as a co-existing mechanism of the cytotoxic effect exerted by 63 T on tested cells, studies involving the analysis of reactive oxygen species (ROS) generation and markers of oxidative stress in cells incubated with 63 T were carried out.

View Article and Find Full Text PDF

There is accumulating evidence that bumetanide, which has been used over decades as a potent loop diuretic, also exerts effects on brain disorders, including autism, neonatal seizures, and epilepsy, which are not related to its effects on the kidney but rather mediated by inhibition of the neuronal Na-K-Cl cotransporter isoform NKCC1. However, following systemic administration, brain levels of bumetanide are typically below those needed to inhibit NKCC1, which critically limits its clinical use for treating brain disorders. Recently, active efflux transport at the blood-brain barrier (BBB) has been suggested as a process involved in the low brain:plasma ratio of bumetanide, but it is presently not clear which transporters are involved.

View Article and Find Full Text PDF

Previously, it has been reported that molecules built on the benzanilide and thiobenzanilide scaffold are the promising groups of compounds with several biological activities including antifungal, antimycotic, antibacterial, spasmolytic, and anticancer ones. In this study the mechanism of action of one selected thiobenzanilide derivative N,N'-(1,2-phenylene)bis3,4,5-trifluorobenzothioamide (63T) with strongest cytotoxic activity has been investigated for the first time in human lung adenocarcinoma (A549) and normal lung derived fibroblast (CCD39Lu) in a cell culture model. The results demonstrated, that 63T can be considered a selective anticancer compound.

View Article and Find Full Text PDF

Genistein, a naturally occurring isoflavone, possesses many beneficial health effects. To improve the bioactivity of the natural compound, we designed and synthesized the genistein prodrug FEHH6-1. In the present study, we evaluated the biological effects of FEHH6-I on mouse RAW264.

View Article and Find Full Text PDF

The Na(+)-K(+)-Cl(-) cotransporter NKCC1 plays a major role in the regulation of intraneuronal Cl(-) concentration. Abnormal functionality of NKCC1 has been implicated in several brain disorders, including epilepsy. Bumetanide is the only available selective NKCC1 inhibitor, but also inhibits NKCC2, which can cause severe adverse effects during treatment of brain disorders.

View Article and Find Full Text PDF

Objective: The loop diuretic bumetanide has been reported to potentiate the antiseizure activity of phenobarbital in rodent models of neonatal seizures, most likely as a result of inhibition of the chloride importer Na-K-Cl cotransporter isoform 1 (NKCC1) in the brain. In view of the intractability of neonatal seizures, the preclinical findings prompted a clinical trial in neonates on bumetanide as an add-on to phenobarbital, which, however, had to be terminated because of ototoxicity and lack of efficacy. We have recently shown that bumetanide penetrates only poorly into the brain, so that we developed lipophilic prodrugs such as BUM5, the N,N-dimethylaminoethylester of bumetanide, which penetrate more easily into the brain and are converted to bumetanide.

View Article and Find Full Text PDF

Background/aim: Resveratrol, a natural polyphenol, possesses many beneficial health properties but its therapeutic application is limited due to its low water solubility and instability against oxidative processes. To improve the stability and lipophilicity of the natural compound, we synthesized a resveratrol prodrug, termed FEHH4-1. In the present study, we compared the antiproliferative and pro-apoptotic effects of resveratrol with FEHH4-1 on Jurkat T-cells.

View Article and Find Full Text PDF

The cytotoxicity of 27 benzanilides and dithiobenzanilides built on a stilbene scaffold and possessing various functional groups in aromatic rings previously described for their spasmolytic properties was assayed on three human cancer cell lines (A549 -lung adenocarcinoma, MCF-7 estrogen dependent breast adenocarcinoma and MDA-MB-231 estrogen independent breast adenocarcinoma) and 2 non-tumorigenic cell lines (CCD39Lu-lung fibroblasts, MCF-12A - breast epithelial). Three compounds (6, 15 and 18) showed selective antiproliferative activity against estrogen dependent MCF-7 cancer cells and their estrogenic activity was further confirmed in MCF-7 transfected with an estrogen receptor reporter plasmid and in HEK239 cells over-expressing the estrogen receptor alpha (ERα). Compound 18 is especially interesting as a potential candidate for therapy since it is highly toxic and selective towards estrogen dependent MCF7 cell lines (IC50 = 5.

View Article and Find Full Text PDF

Inhibition of hERG K channels by structurally diverse drugs prolongs the ventricular action potential and increases the risk of torsade de pointes arrhythmias and sudden cardiac death. The capture of drugs behind closed channel gates, so-called drug trapping, is suggested to harbor an increased pro-arrhythmic risk. In this study, the trapping mechanisms of a trapped hERG blocker propafenone and a bulky derivative (MW: 647.

View Article and Find Full Text PDF

The adenosine triphosphate-binding cassette transporter P-glycoprotein (ABCB1/Abcb1a) restricts at the blood-brain barrier (BBB) brain distribution of many drugs. ABCB1 may be involved in drug-drug interactions (DDIs) at the BBB, which may lead to changes in brain distribution and central nervous system side effects of drugs. Positron emission tomography (PET) with the ABCB1 substrates (R)-[(11)C]verapamil and [(11)C]-N-desmethyl-loperamide and the ABCB1 inhibitor tariquidar has allowed direct comparison of ABCB1-mediated DDIs at the rodent and human BBB.

View Article and Find Full Text PDF

Background And Purpose: The N-K-Cl cotransporters (NKCCs) mediate the coupled, electroneutral movement of Na , K and Cl ions across cell membranes. There are two isoforms of this cation co-transporter, NKCC1 and NKCC2. NKCC2 is expressed primarily in the kidney and is the target of diuretics such as bumetanide.

View Article and Find Full Text PDF

In this contribution the development of a new class of vasodilating compounds obtained by lead structure optimization is described. Three groups of compounds were synthesized and tested for their activity on various smooth muscle preparations of the guinea pig. Beside the lead compound 3a, the most interesting derivative was 1H-imidazole-1-carbothioic acid O-cyclohexyl ester hydrochloride (5b) with a good selective vasodilating potential on aorta and pulmonary artery rings (EC50 14 μM and 24 μM, respectively).

View Article and Find Full Text PDF

Background/aim: Inhibition of arachidonic acid metabolism by curcumin has been suggested to be a key mechanism for its anti-carcinogenic action. Recently, we reported on the synthesis of curcumin analogues and their evaluation as selective COX1 inhibitors. Two compounds (HP109/HP102) were selected for evaluation of their anti-proliferative and pro-apoptotic potential in Jurkat T-cells.

View Article and Find Full Text PDF

The transcription factor HIF-1α regulates the adaptive response of cells to hypoxia and oxidative stress. In addition, an important regulatory role for HIF-1α in immune reactions and inflammation is suggested. The present study attempts to investigate the effect of the gaseous signalling molecule hydrogen sulphide (H2S) on HIF-1α in THP-1 macrophages using the slow H2S releasing donor GYY4137.

View Article and Find Full Text PDF

Acute hematological diseases (leukemias and aggressive lymphomas) can be cured in approximately half of the patients, while the other patients die from their disease. Chronic leukemias and indolent lymphomas can be well controlled for years in most cases. However, the cure rate of these patients is low and the course of the disease is characterized by frequent recurrence.

View Article and Find Full Text PDF

In about 20-40% of patients, status epilepticus (SE) is refractory to standard treatment with benzodiazepines, necessitating second- and third-line treatments that are not always successful, resulting in increased mortality. Rat models of refractory SE are instrumental in studying the changes underlying refractoriness and to develop more effective treatments for this severe medical emergency. Failure of GABAergic inhibition is a likely cause of the development of benzodiazepine resistance during SE.

View Article and Find Full Text PDF

Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity.

View Article and Find Full Text PDF

Piperine activates TRPV1 (transient receptor potential vanilloid type 1 receptor) receptors and modulates γ-aminobutyric acid type A receptors (GABAAR). We have synthesized a library of 76 piperine analogues and analyzed their effects on GABAAR by means of a two-microelectrode voltage-clamp technique. GABAAR were expressed in Xenopus laevis oocytes.

View Article and Find Full Text PDF

Objective: There is considerable interest in using bumetanide, a chloride importer Na-K-Cl cotransporter antagonist, for treatment of neurological diseases, such as epilepsy or ischemic and traumatic brain injury, that may involve deranged cellular chloride homeostasis. However, bumetanide is heavily bound to plasma proteins (~98%) and highly ionized at physiological pH, so that it only poorly penetrates into the brain, and chronic treatment with bumetanide is compromised by its potent diuretic effect.

Methods: To overcome these problems, we designed lipophilic and uncharged prodrugs of bumetanide that should penetrate the blood-brain barrier more easily than the parent drug and are converted into bumetanide in the brain.

View Article and Find Full Text PDF

P-glycoprotein (P-gp) is an ATP-dependent multidrug resistance efflux transporter that plays an important role in anticancer drug resistance and in pharmacokinetics of medicines. Despite a large number of structurally and functionally diverse compounds, also flavonoids and chalcones have been reported as inhibitors of P-gp. The latter share some similarity with the well studied class of propafenones, but do not contain a basic nitrogen atom.

View Article and Find Full Text PDF

The action of piperine (the pungent component of pepper) and its derivative SCT-66 ((2E,4E)-5-(1,3-benzodioxol-5-yl))-N,N-diisobutyl-2,4-pentadienamide) on different gamma-aminobutyric acid (GABA) type A (GABA(A)) receptors, transient-receptor-potential-vanilloid-1 (TRPV1) receptors and behavioural effects were investigated. GABA(A) receptor subtypes and TRPV1 receptors were expressed in Xenopus laevis oocytes. Modulation of GABA-induced chloride currents (I(GABA)) by piperine and SCT-66 and activation of TRPV1 was studied using the two-microelectrode-voltage-clamp technique and fast perfusion.

View Article and Find Full Text PDF