A novel electrosynthetic approach to aryl dibenzothiophenium salts, including the direct intramolecular formation of a C-S bond in a metal-free, electrochemical key step under ambient conditions, is reported. The broad applicability of this method is demonstrated with 14 examples, including nitrogen-containing heterocycles in isolated yields up to 72%. The resulting sulfonium salts can be used as precursors for fluorine labeling to give [F]fluoroarenes as found in PET tracer ligands.
View Article and Find Full Text PDF[F]6-fluoro-L-DOPA ([F]FDOPA) is a diagnostic radiopharmaceutical for positron emission tomography (PET) imaging that is used to image Parkinson's disease, brain tumors, and focal hyperinsulinism of infancy. Despite these important applications, [F]FDOPA PET remains underutilized because of synthetic challenges associated with accessing the radiotracer for clinical use; these stem from the need to radiofluorinate a highly electron-rich catechol ring in the presence of an amino acid. To address this longstanding challenge in the PET radiochemistry community, we have developed a one-pot, two-step synthesis of high-molar-activity [F]FDOPA by Cu-mediated fluorination of a pinacol boronate (BPin) precursor.
View Article and Find Full Text PDFOver the past few decades, various computational methods have become increasingly important for discovering and developing novel drugs. Computational prediction of chemical reactions is a key part of an efficient drug discovery process. In this review, we discuss important parts of this field, with a focus on utilizing reaction data to build predictive models, the existing programs for synthesis prediction, and usage of quantum mechanics and molecular mechanics (QM/MM) to explore chemical reactions.
View Article and Find Full Text PDF