Catalytic deconstruction has emerged as a promising solution to valorize polyethylene (PE) waste into valuable products, such as oils, fuels, surfactants, and lubricants. Unfortunately, commercialization has been hampered by inadequate optimization of PE deconstruction due to an inability to either truly characterize the polymer transformations or adjust catalytic conditions to match the ever-evolving product distribution and associated property changes. To address these challenges, a detailed analysis of molar mass distributions and thermal characterization was developed herein and applied to low-density polyethylene (LDPE) deconstruction to enable more thorough identification of polymer chain characteristics within the solids (e.
View Article and Find Full Text PDFThe functionality inherent in lignin-derivable aromatics (, polar methoxy groups) can provide a potential opportunity to improve the hydrophilicity of polysulfones (PSfs) without the need for the additional processing steps and harsh reagents/conditions that are typically used in conventional PSf modifications. As determined herein, lignin-derivable PSfs without any post-polymerization modification exhibited higher hydrophilicity than comparable petroleum-based PSfs (commercial/laboratory-synthesized) and also demonstrated similar hydrophilicity to functionalized BPA-PSfs reported in the literature. Importantly, the lignin-derivable PSfs displayed improved thermal properties relative to functionalized BPA-PSfs in the literature, and the thermal properties of these bio-derivable PSfs were close to those of common non-functionalized PSfs.
View Article and Find Full Text PDFLignin-derivable bisguaiacols/bissyringols are viable alternatives to commercial bisphenols; however, many bisguaiacols/bissyringols (e.g., bisguaiacol F [BGF]) have unsubstituted bridging carbons between the aromatic rings, making them more structurally similar to bisphenol F (BPF) than bisphenol A (BPA) - both of which are suspected endocrine disruptors.
View Article and Find Full Text PDFWe report a depolymerization strategy to nearly quantitatively regenerate isocyanates from thermoplastic and thermoset polyurethanes (PUs) and then resynthesize PUs using the recovered isocyanates. To date, chemical/advanced recycling of PUs has focused primarily on the recovery of polyols and diamines under comparatively harsh conditions ( high pressure and temperature), and the recovery of isocyanates has been difficult. Our approach leverages an organoboron Lewis acid to depolymerize PUs directly to isocyanates under mild conditions ( ∼80 °C in toluene) without the need for phosgene or other harsh reagents, and we show that both laboratory-synthesized and commercially sourced PUs can be depolymerized.
View Article and Find Full Text PDFThe hydrogenolysis of polymers is emerging as a promising approach to deconstruct plastic waste into valuable chemicals. Yet, the complexity of plastic waste, including multilayer packaging, is a significant barrier to handling realistic waste streams. Herein, we reveal fundamental insights into a new chemical route for transforming a previously unaddressed fraction of plastic waste - poly(ethylene-co-vinyl alcohol) (EVOH) and related polymer blends - into alkane products.
View Article and Find Full Text PDFAlthough lipid nanoparticles (LNPs) are the predominant nanocarriers for short-interfering RNA (siRNA) delivery, most therapies use nearly identical formulations that have taken 30 years to design but lack the diverse property ranges necessary for versatile application. This dearth in variety and the extended timeline for implementation are attributed to a limited understanding of how LNP properties facilitate overcoming biological barriers. Herein, a simple kinetic model was developed by using major rate-limiting steps for siRNA delivery, and this model enabled the identification of a critical parameter to predict LNP efficacy without extensive experimental testing.
View Article and Find Full Text PDFThe cycling of next-generation, high-capacity silicon (Si) anodes capable of 3579 mAh·g is greatly hindered by the instability of the solid-electrolyte interphase (SEI). The large volume changes of Si during (de)lithiation cause continuous cracking of the SEI and its reconstruction, leading to loss of lithium inventory and extensive consumption of electrolyte. The SEI formed in situ during cell cycling is mostly composed of molecular fragments and oligomers, the structure of which is difficult to tailor.
View Article and Find Full Text PDFUnderstanding polymer transport in nanopores is crucial for optimizing heterogeneously catalyzed processes in polymer upcycling and fabricating high-performance nanocomposite films and membranes. Although confined polymer dynamics have been extensively studied, the behavior of polyethylene (PE)-the most widely used commodity polymer-in pores smaller than 20 nm remains largely unexplored. We investigate the effects of extreme nanoconfinement on PE transport using capillary rise infiltration in silica nanoparticle packings with average pore radii ranging from ∼1 to ∼9 nm.
View Article and Find Full Text PDFIonic liquids (ILs) are a promising medium to assist in the advanced (chemical and biological) recycling of polymers, owing to their tunable catalytic activity, tailorable chemical functionality, low vapor pressures, and thermal stability. These unique physicochemical properties, combined with ILs' capacity to solubilize plastics waste and biopolymers, offer routes to deconstruct polymers at reduced temperatures (and lower energy inputs) versus conventional bulk and solvent-based methods, while also minimizing unwanted side reactions. In this Viewpoint, we discuss the use of ILs as catalysts and mediators in advanced recycling, with an emphasis on chemical recycling, by examining the interplay between IL chemistry and deconstruction thermodynamics, deconstruction kinetics, IL recovery, and product recovery.
View Article and Find Full Text PDFThe circularity of current and future polymeric materials is a major focus of fundamental and applied research, as undesirable end-of-life outcomes and waste accumulation are global problems that impact our society. The recycling or repurposing of thermoplastics and thermosets is an attractive solution to these issues, yet both options are encumbered by poor property retention upon reuse, along with heterogeneities in common waste streams that limit property optimization. Dynamic covalent chemistry, when applied to polymeric materials, enables the targeted design of reversible bonds that can be tailored to specific reprocessing conditions to help address conventional recycling challenges.
View Article and Find Full Text PDFAlternative polymer feedstocks are highly desirable to address environmental, social, and security concerns associated with petrochemical-based materials. Lignocellulosic biomass (LCB) has emerged as one critical feedstock in this regard because it is an abundant and ubiquitous renewable resource. LCB can be deconstructed to generate valuable fuels, chemicals, and small molecules/oligomers that are amenable to modification and polymerization.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
January 2023
Bisguaiacols, lignin-derivable bisphenols, are considered promising and possibly safer alternatives to bisphenol A (BPA), but comprehensive toxicity investigations are needed to ensure safety. Most toxicity studies of BPA and its analogues have focused on potential estrogenic activity, and only limited toxicological data are available on other toxicity aspects, such as genotoxicity at low exposure levels. In this study, the genotoxicity of six lignin-derivable bisguaiacols with varying regioisomer contents and degrees of methoxy substitution was investigated using a multi-tiered method, consisting of in silico simulations, in vitro Ames tests, and in vivo comet tests.
View Article and Find Full Text PDFWe present a computational modeling protocol that can accurately predict changes in both and gene expression levels in response to the application of various siRNA formulations. We describe how to use this Python-based pipeline to obtain crucial information, namely maximum silencing level and duration of silencing, toward the design of therapeutically relevant dosing regimens. The protocol details the steps for running internalization rate fitting to produce predictions based on experimental measurements from a single time point.
View Article and Find Full Text PDFLaunching a startup company is like synthesizing a new molecule. There is a starting point and a general concept for how to achieve the desired end. Known steps may be taken, but a successful synthesis is rarely the result of the original plan and relies on perseverance and creativity.
View Article and Find Full Text PDFLignin-derivable bisphenols are potential alternatives to bisphenol A (BPA), a suspected endocrine disruptor; however, a greater understanding of structure-activity relationships (SARs) associated with such lignin-derivable building blocks is necessary to move replacement efforts forward. This study focuses on the prediction of bisphenol estrogenic activity (EA) to inform the design of potentially safer BPA alternatives. To achieve this goal, the binding affinities to estrogen receptor alpha (ERα) of lignin-derivable bisphenols were calculated molecular docking simulations and correlated to median effective concentration (EC) values using an empirical correlation curve created from known EC values and binding affinities of commercial (bis)phenols.
View Article and Find Full Text PDFThe sustainability of current and future plastic materials is a major focus of basic research, industry, government, and society at large. There is a general recognition of the positive impacts of plastics, especially packaging; however, the negative consequences around end-of-life outcomes and overall materials circularity are issues that must be addressed. In this perspective, we highlight some of the challenges associated with the many uses of plastic components and the diversity of materials needed to satisfy consumer demand, with several examples focused on plastics packaging.
View Article and Find Full Text PDFChemocatalytic lignin valorization strategies are critical for a sustainable bioeconomy, as lignin, especially technical lignin, is one of the most available and underutilized aromatic feedstocks. Here, we provide the first report of an intensified reactive distillation–reductive catalytic deconstruction (RD-RCD) process to concurrently deconstruct technical lignins from diverse sources and purify the aromatic products at ambient pressure. We demonstrate the utility of RD-RCD bio-oils in high-performance additive manufacturing via stereolithography 3D printing and highlight its economic advantages over a conventional reductive catalytic fractionation/RCD process.
View Article and Find Full Text PDFConspectusIon-containing solid block polymer (BP) electrolytes can self-assemble into microphase-separated domains to facilitate the independent optimization of ion conduction and mechanical stability; this assembly behavior has the potential to improve the functionality and safety of lithium-ion batteries over liquid electrolytes to meet future demands (e.g., large capacities and long lifetimes) in various applications.
View Article and Find Full Text PDFA critical hurdle in the clinical translation of nucleic acid drugs is the inefficiency in testing formulations for therapeutic potential. Specifically, the ability to quantitatively predict gene expression is lacking when transitioning between cell culture and animal studies. We address this challenge by developing a mathematical framework that can reliably predict short-interfering RNA (siRNA)-mediated gene silencing with as few as one experimental data point as an input, evaluate the efficacies of existing formulations in an expeditious manner, and ultimately guide the design of nanocarriers with optimized performances.
View Article and Find Full Text PDFPlastics have revolutionized modern life, but have created a global waste crisis driven by our reliance and demand for low-cost, disposable materials. New approaches are vital to address challenges related to plastics waste heterogeneity, along with the property reductions induced by mechanical recycling. Chemical recycling and upcycling of polymers may enable circularity through separation strategies, chemistries that promote closed-loop recycling inherent to macromolecular design, and transformative processes that shift the life-cycle landscape.
View Article and Find Full Text PDFClimate stationarity is a traditional assumption in the design of the urban drainage network, including green infrastructure practices such as bioretention cells. Predicted deviations from historic climate trends associated with global climate change introduce uncertainty in the ability of these systems to maintain service levels in the future. Climate change projections are made using output from coarse-scale general circulation models (GCMs), which can then be downscaled using regional climate models (RCMs) to provide predictions at a finer spatial resolution.
View Article and Find Full Text PDFSustainable polymers from lignocellulosic biomass have the potential to reduce the environmental impact of commercial plastics while also offering significant performance and cost benefits relative to petrochemical-derived macromolecules. However, most currently available biobased polymers are hampered by insufficient thermomechanical properties, low economic feasibility (e.g.
View Article and Find Full Text PDFIn this report, we merge block copolymers with vitrimers in an effort to realize the prospect of higher-order, nanoscale control over associative cross-link exchange and flow. We show the use of controlled polymerization as a vital tool to understand fundamental structure-property effects through the precise control of polymer architecture and molecular weight. Vitrimers derived from self-assembling block copolymers exhibit superior resistance to macroscopic deformation in comparison to their analogs generated from statistical copolymers.
View Article and Find Full Text PDFThe optimization of ionic conductivity and lithium-ion battery stability can be achieved by independently tuning the ion transport and mechanical robustness of block polymer (BP) electrolytes. However, the ionic conductivity of BP electrolytes is inherently limited by the covalent attachment of the ionically conductive block to the mechanically robust block, among other factors. Herein, the BP electrolyte polystyrene--poly(oligo-oxyethylene methacrylate) [PS--POEM] was blended with POEM homopolymers of varying molecular weights.
View Article and Find Full Text PDF