The absorption of water and solutes by plant leaves has been recognised since more than two centuries. Given the polar nature of water and solutes, the mechanisms of foliar uptake have been proposed to be similar for water and electrolytes, including nutrient solutions. Research efforts since the 19th century focussed on characterising the properties of cuticles and applying foliar sprays to crop plants as a tool for improving crop nutrition.
View Article and Find Full Text PDFRationale: Boron (B) is an essential micronutrient in plants and its isotope variations are used to gain insights into plant metabolism, which is important for crop plant cultivation. B isotope variations were used to trace intra-plant fractionation mechanisms in response to the B concentration in the irrigation water spanning the range from B depletion to toxic levels.
Methods: A fully validated analytical procedure based on multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), sample decomposition and B matrix separation was applied to study B isotope fractionation.
Most aerial plant surfaces are covered with a lipid-rich cuticle, which is a barrier for the bidirectional transport of substances between the plant and the surrounding environment. This review article provides an overview of the significance of the leaf cuticle as a barrier for the deposition and absorption of water and electrolytes. After providing insights into the physico-chemical properties of plant surfaces, the mechanisms of foliar absorption are revised with special emphasis on solutes.
View Article and Find Full Text PDFFoliar application of micronutrients (e.g. Fe ) onto plants over an extended time is challenging and often not possible due to insufficient rainfastness.
View Article and Find Full Text PDFLaser scanning is a non-invasive method for collecting and parameterizing 3D data of well reflecting objects. These systems have been used for 3D imaging of plant growth and structure analysis. A prerequisite is that the recorded signals originate from the true plant surface.
View Article and Find Full Text PDFBoron (B) is an essential microelement for plants and is constantly needed throughout the plant life due to its function as a structural element of the plant cell wall. B deficiency is a wide-spread problem in agricultural areas world-wide, and management of B nutrition is challenged by sudden occurrences of B deficiency or inconsistent effects of foliar B application. The effects of insufficient B supply on different structures relevant for the plant water status have been heavily researched, but the resulting conclusions are contradictory and no clear picture has so far emerged that fully explains the inconsistencies.
View Article and Find Full Text PDFA selection of six urine-derived struvite fertilizers generated by innovative precipitation technologies was assessed for their quality and their effectiveness as phosphorus sources for crops. Struvite purity was influenced by drying techniques and magnesium dosage. In a greenhouse experiment, the urine fertilizers led to biomass yields and phosphorus uptakes comparable to or higher than those induced by a commercial mineral fertilizer.
View Article and Find Full Text PDFA No Mix sanitation system was installed in a dormitory at the University of Can Tho in Vietnam, with the objective of recycling nutrients from source separated urine. This paper presents a pilot scale evaporation technology, and investigates the feasibility of recovering nitrogen and phosphorus from human urine by solar still for use as fertilizer. After 26 days of sun exposure, 360 g of solid fertilizer material was recovered from 50 L undiluted urine.
View Article and Find Full Text PDFThere is increasing evidence suggesting that iron (Fe) deficiency induces not only leaf chlorosis and a decline of photosynthesis, but also structural changes in leaf morphology, which might affect the functionality of leaves. In this study, we investigated the effects of Fe deficiency on the water relations of peach (Prunus persica (L.) Batsch.
View Article and Find Full Text PDFPenetration rates of foliar-applied polar solutes are highly variable and the underlying mechanisms are not yet fully understood. The contribution of stomata especially, is still a matter of debate. Thus, the size exclusion limits of the stomatal foliar uptake pathway, its variability and its transport capacity have been investigated.
View Article and Find Full Text PDFFoliar uptake pathways for hydrophilic solutes were studied by the analysis of co-uptake of 15N-labelled urea, NH4+ or NO3- and 13C-labelled sucrose across leaf surfaces of various plant species. Uptake of N (y) and sucrose (x) were strongly correlated. Curvilinear regression revealed significantly positive intercepts with the y-axis indicating the involvement of a sucrose-excluding pathway consisting of small pores with radii <0.
View Article and Find Full Text PDFExposure to the allelopathic monoterpenes camphor (100 mg/10 L) and menthol (50 mg/10 L) for 24 h enhanced transpiration of Arabidopsis thaliana fully developed rosette leaves similar to de-waxing. As ascertained by ESEM analyses the leaf surfaces were spotted with platelet like structures which seem to be partly mixed with the lipophilic epicuticular layers. The structures are supposed to contain the condensed monoterpenes, which could be identified by GC.
View Article and Find Full Text PDF