Background: During the last decades, we face an increasing interest in superior plants to supply growing demands for human and animal nutrition and for the developing bio-based economy. Presently, our limited understanding of their metabolism and its regulation hampers the targeted development of desired plant phenotypes. In this regard, systems biology, in particular the integration of metabolic and regulatory networks, is promising to broaden our knowledge and to further explore the biotechnological potential of plants.
View Article and Find Full Text PDFHere, we demonstrate whole-plant metabolic profiling by stable isotope labeling and combustion isotope-ratio mass spectrometry for precise quantification of assimilation, translocation, and molecular reallocation of (13)CO2 and (15)NH4NO3 The technology was applied to rice (Oryza sativa) plants at different growth stages. For adult plants, (13)CO2 labeling revealed enhanced carbon assimilation of the flag leaf from flowering to late grain-filling stage, linked to efficient translocation into the panicle. Simultaneous (13)CO2 and (15)NH4NO3 labeling with hydroponically grown seedlings was used to quantify the relative distribution of carbon and nitrogen.
View Article and Find Full Text PDFBackground: The mode of action of the grass herbicides cinmethylin and 5-benzyloxymethyl-1,2-isoxazolines substituted with methylthiophene (methiozolin) or pyridine (ISO1, ISO2) was investigated.
Results: Physiological profiling using a series of biotests and metabolic profiling in treated duckweed (Lemna paucicostata L.) suggested a common mode of action for the herbicides.
Background: For novel herbicides identified in greenhouse screens, efficient research is important to discover and chemically optimise new leads with new modes of action (MoAs).
Results: The metabolic and physiological response pattern to a herbicide can be viewed as the result of changes elicited in the molecular and biochemical process chain. These response patterns are diagnostic of a herbicide's MoA.
Two of the major challenges in functional genomics are to identify genes that play a key role in biological processes, and to elucidate the biological role of the large numbers of genes whose function is poorly characterized or still completely unknown. In this study, a combination of large-scale expressed sequence tag sequencing, high-throughput gene silencing and visual phenotyping was used to identify genes in which partial inhibition of expression leads to marked phenotypic changes, mostly on leaves. Three normalized tobacco (Nicotiana tabacum) cDNA libraries were prepared directly in a binary vector using different tissues of tobacco as an RNA source, randomly sequenced and clustered.
View Article and Find Full Text PDFTopramezone is a new, highly selective herbicide of pyrazole structure for the post-emergence control of broadleaf and grass weeds in corn. The biokinetic properties and mode of action of topramezone were investigated in plants of Setaria faberi Herrm, Sorghum bicolor (L.) Moench, Solanum nigrum L.
View Article and Find Full Text PDFIn the past 10 years, strategies for the first steps of herbicide discovery have switched from the testing of chemicals for efficacy on whole plants towards the use of in-vitro assays against molecular targets. Many different approaches have been developed to identify bona fide targets for in-vitro screening. Developments in functional genomics and in pharmaceutical research could aid the development of assay systems for the evaluation of chemicals for their suitability as lead structures in herbicide discovery.
View Article and Find Full Text PDF