Some achiral cyanine dyes form well-ordered chiral assemblies exhibiting pronounced Circular Dichroism (CD) and Circularly Polarized Luminescence (CPL). Notably, achiral C8O3 cyanines self-assemble into tubular J-aggregates, which further organize into bundles displaying bisignate CD spectrum - hallmark of an exciton coupled system - and an unusual bisignated CPL. In contrast, the tubular aggregates display a monosignate CD spectrum.
View Article and Find Full Text PDFVibrational strong coupling (VSC) occurs when molecular vibrations hybridize with the modes of an optical cavity, an interaction mediated by vacuum fluctuations. VSC has been shown to influence the rates and selectivity of chemical reactions. However, a clear understanding of the mechanism at play remains elusive.
View Article and Find Full Text PDFWe show that chiral Frenkel excitons yield intense circularly polarized luminescence with an intrinsic dissymmetry factor in emission g as high as 0.08. This outstanding value is measured through thin films of cyanine J-aggregates that form twisted bundles.
View Article and Find Full Text PDFUltrafast molecular dynamics in fluids is of great importance in many biological and chemical systems. Although such dynamics in bulk liquids has been explored by various methods, experimental tools that unveil the dynamics of solvated solutes are limited. In this work, we have developed resonant optical Kerr effect spectroscopy (ROKE), which is an analogue of optical Kerr effect spectroscopy that measures the reorientational relaxation of a dilute solute in solution.
View Article and Find Full Text PDFWe design, in a most simple way, Fabry-Perot cavities with longitudinal chiral modes by sandwiching between two smooth metallic silver mirrors a layer of polystyrene made planar chiral by torsional shear stress. We demonstrate that the helicity-preserving features of our cavities stem from a spin-orbit coupling mechanism seeded inside the cavities by the specific chiroptical features of planar chirality. Planar chirality gives rise to an extrinsic source of three-dimensional chirality under oblique illumination that endows the cavities with enantiomorphic signatures measured experimentally and simulated with excellent agreement.
View Article and Find Full Text PDFThe chemical and physical properties of molecules and materials are known to be modified significantly under vibrational strong coupling (VSC). To gain insight into the effects of VSC on π-π interactions involved in molecular self-assembly, themselves sensitive to vacuum electromagnetic field fluctuations, the aggregation of two structural isomers (linear and V-shaped) of phenyleneethynylene under cooperative coupling was investigated. By coupling the aromatic C═C stretching band, the assembly of one of the molecules results in the formation of spheres as opposed to flakes under normal conditions.
View Article and Find Full Text PDFStrong coupling provides a powerful way to modify the nonlinear optical properties of materials. The coupling strength of the state-of-the-art strongly coupled systems is restricted by a weak-field confinement of the cavity, which limits the enhancement of the optical nonlinearity. Here, we investigate a strong coupling between Mie resonant modes of high-index dielectric nanocavities and an epsilon-near-zero mode of an ultrathin indium tin oxide film and obtain an anticrossing splitting of 220 meV.
View Article and Find Full Text PDFOver the past decade, the possibility of manipulating chemistry and material properties using hybrid light-matter states has stimulated considerable interest. Hybrid light-matter states can be generated by placing molecules in an optical cavity that is resonant with a molecular transition. Importantly, the hybridization occurs even in the dark because the coupling process involves the zero-point fluctuations of the optical mode (a.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2021
Strong coupling plays a significant role in influencing chemical reactions and tuning material properties by modifying the energy landscapes of the systems. Here we study the effect of vibrational strong coupling (VSC) on supramolecular organization. For this purpose, a rigid-rod conjugated polymer known to form gels was strongly coupled together with its solvent in a microfluidic IR Fabry-Perot cavity.
View Article and Find Full Text PDFOver the past decade, there has been a surge of interest in the ability of hybrid light-matter states to control the properties of matter and chemical reactivity. Such hybrid states can be generated by simply placing a material in the spatially confined electromagnetic field of an optical resonator, such as that provided by two parallel mirrors. This occurs even in the dark because it is electromagnetic fluctuations of the cavity (the vacuum field) that strongly couple with the material.
View Article and Find Full Text PDFLight-Matter strong coupling in the vacuum limit has been shown, over the past decade, to enhance material properties. Oxide nanoparticles are known to exhibit weak ferromagnetism due to vacancies in the lattice. Here we report the 700-fold enhancement of the ferromagnetism of YBaCuO nanoparticles under a cooperative strong coupling at room temperature.
View Article and Find Full Text PDFNonlinear optical responses provide a powerful way to understand the microscopic interactions between laser fields and matter. They are critical for plenty of applications, such as in lasers, integrated photonic circuits, biosensing and medical tools. However, most materials exhibit weak optical nonlinearities or long response times when they interact with intense optical fields.
View Article and Find Full Text PDFVibrational strong coupling (VSC) has recently been shown to change the rate and chemoselectivity of ground-state chemical reactions via the formation of light-matter hybrid polaritonic states. However, the observation that vibrational-mode symmetry has a large influence on charge-transfer reactions under VSC suggests that symmetry considerations could be used to control other types of chemical selectivity through VSC. Here, we show that VSC influences the stereoselectivity of the thermal electrocyclic ring opening of a cyclobutene derivative, a reaction which follows the Woodward-Hoffmann rules.
View Article and Find Full Text PDFDuring the past decade, it has been shown that light-matter strong coupling of materials can lead to modified and often improved properties which has stimulated considerable interest. While charge transport can be enhanced in n-type organic semiconductors by coupling the electronic transition and thereby splitting the conduction band into polaritonic states, it is not clear whether the same process can also influence carrier transport in the valence band of p-type semiconductors. Here we demonstrate that it is indeed possible to enhance both the conductivity and photoconductivity of a p-type semiconductor rr-P3HT that is ultrastrongly coupled to plasmonic modes.
View Article and Find Full Text PDFIt is well known that symmetry plays a key role in chemical reactivity. Here we explore its role in vibrational strong coupling (VSC) for a charge-transfer (CT) complexation reaction. By studying the trimethylated-benzene-I CT complex, we find that VSC induces large changes in the equilibrium constant K of the CT complex, reflecting modifications in the ΔG° value of the reaction.
View Article and Find Full Text PDFVibrational strong coupling (VSC) has recently emerged as a completely new tool for influencing chemical reactivity. It harnesses electromagnetic vacuum fluctuations through the creation of hybrid states of light and matter, called polaritonic states, in an optical cavity resonant to a molecular absorption band. Here, we investigate the effect of vibrational strong coupling of water on the enzymatic activity of pepsin, where a water molecule is directly involved in the enzyme's chemical mechanism.
View Article and Find Full Text PDFPlasmonic coupling is a fascinating phenomenon occurring between neighboring metal nanostructures. We report a straightforward approach to study such process macroscopically by fabricating 2D networks of gold nanoparticles, interconnected with responsive hygroscopic organic linkers. By controlling the humidity we tune the interparticle distance to reversibly trigger plasmonic coupling collectively over several millimeters.
View Article and Find Full Text PDFHere, we report the catalytic effect of vibrational strong coupling (VSC) on the solvolysis of para-nitrophenyl acetate (PNPA), which increases the reaction rate by an order of magnitude. This is observed when the microfluidic Fabry-Perot cavity in which the VSC is generated is tuned to the C=O vibrational stretching mode of both the reactant and solvent molecules. Thermodynamic experiments confirm the catalytic nature of VSC in the system.
View Article and Find Full Text PDFπ-conjugated organic microcrystals often act as optical resonators in which the generated photons in the crystal are confined by the reflection at the crystalline facets and interfere to gain lasing action. Here, we fabricate microcrystals from a mixture of carbon-bridged oligo- para-phenylenevinylenes (COPVs) with energy-donor (D) and energy-acceptor (A) characters. Upon weak excitation of the single D-A co-crystal, Förster resonance energy transfer (FRET) takes place, exhibiting spontaneous emission from A.
View Article and Find Full Text PDFWe experimentally demonstrate a fine control over the coupling strength of vibrational light-matter hybrid states by controlling the orientation of a nematic liquid crystal. Through an external voltage, the liquid crystal is seamlessly switched between two orthogonal directions. Using these features, for the first time, we demonstrate electrical switching and increased Rabi splitting through transition dipole moment alignment.
View Article and Find Full Text PDFLight-matter strong coupling allows for the possibility of entangling the wave functions of different molecules through the light field. We hereby present direct evidence of non-radiative energy transfer well beyond the Förster limit for spatially separated donor and acceptor cyanine dyes strongly coupled to a cavity. The transient dynamics and the static spectra show an energy transfer efficiency approaching 37 % for donor-acceptor distances ≥100 nm.
View Article and Find Full Text PDFWe report a novel approach to modify the second order nonlinear optical (NLO) susceptibility of organic nanofiber crystals by hybridization with the optical modes of microcavities in the strong coupling regime. The wavelength dependence of the SHG efficiency displays two intense peaks corresponding to the so-formed light-matter hybrid states. Our results demonstrate an enhancement of the resonant SHG efficiency of the lower polariton by 2 orders of magnitude for the collectively coupled molecules as compared to that of the same material outside the microcavity.
View Article and Find Full Text PDF