J R Soc Interface
September 2023
Often overlooked, vibration transmission through the entire body of an animal is an important factor in understanding vibration sensing in animals. To investigate the role of dynamic properties and vibration transmission through the body, we used a modal test and lumped parameter modelling for a spider. The modal test used laser vibrometry data on a tarantula, and revealed five modes of the spider in the frequency range of 20-200 Hz.
View Article and Find Full Text PDFAbstractPredicting evolution in natural systems will require understanding how selection operates in multispecies communities. We predicted that the amount that traits evolve in multispecies mixtures would be less than the amount that would be predicted from the additive contributions of the pairwise interactions and that subordinate species will be more likely to evolve in competitive systems than dominant species. We conducted an experimental test of these predictions using a guild of protozoans found in the water-filled leaves of the pitcher plant .
View Article and Find Full Text PDFBiotic and abiotic mechanical stimuli are ubiquitous in the environment, and are a widely used source of sensory information in arthropods. Spiders sense mechanical stimuli using hundreds of slit sense organs (small isolated slits, large isolated slits, groups of slits and lyriform organs) distributed across their bodies and appendages. These slit sense organs are embedded in the exoskeleton and detect cuticular strain.
View Article and Find Full Text PDFCompetition can result in evolutionary changes to coexistence between competitors but there are no theoretical models that predict how the components of coexistence change during this eco-evolutionary process. Here we study the evolution of the coexistence components, niche overlap and competitive differences, in a two-species eco-evolutionary model based on consumer-resource interactions and quantitative genetic inheritance. Species evolve along a one-dimensional trait axis that allows for changes in both niche position and species intrinsic growth rates.
View Article and Find Full Text PDFRecent studies have revealed that seagrass blade surfaces, also known as the phyllosphere, are rich habitats for microbes; however, the primary drivers of composition and structure in these microbial communities are largely unknown. This study utilized a reciprocal transplant approach between two sites with different environmental conditions combined with 16S rRNA gene sequencing (iTag) to examine the relative influence of environmental conditions and host plant on phyllosphere community composition of the seagrass Thalassia testudinum. After 30 days, identity of phyllosphere microbial community members was more similar within the transplant sites than between despite differences in the source of host plant.
View Article and Find Full Text PDFAlthough seagrasses are economically and ecologically critical species, little is known about their blade surface microbial communities and how these communities relate to the plant host. To determine microbial community composition and diversity on seagrass blade surfaces and in the surrounding seawater,16S rRNA gene sequencing (iTag) was used for samples collected at five sites along a gradient of freshwater input in the northern Gulf of Mexico on three separate sampling dates. Additionally, seagrass surveys were performed and environmental parameters were measured to characterize host characteristics and the abiotic conditions at each site.
View Article and Find Full Text PDFThe effects of resource pulses on natural communities are known to vary with the type of pulse. However, less is known about mechanisms that determine the responses of different species to the same pulse. We hypothesized that these differences are related to the size of the species, as increasing size may be correlated with increasing competitive ability and decreasing tolerance to predation.
View Article and Find Full Text PDFThe importance of predators in influencing community structure is a well-studied area of ecology. However, few studies test ecological hypotheses of predation in multi-predator microbial communities. The phytotelmic community found within the water-filled leaves of the pitcher plant, Sarracenia purpurea, exhibits a simple trophic structure that includes multiple protozoan predators and microbial prey.
View Article and Find Full Text PDFBackground: Increasing rates of change in climate have been observed across the planet and have contributed to the ongoing range shifts observed for many species. Although ecologists are now using a variety of approaches to study how much and through what mechanisms increasing temperature and nutrient pollution may influence the invasions inherent in range shifts, accurate predictions are still lacking.
Methods And Results: In this study, we conducted a factorial experiment, simultaneously manipulating warming, nitrogen addition and introduction of Pityopsis aspera, to determine how range-shifting species affect a plant community.
Coastal geomorphology and vegetation are expected to be particularly sensitive to climate change, because of disturbances caused by sea-level rise and increased storm frequency. Dunes have critical reciprocal interactions with vegetation; dunes create habitats for plants, while plants help to build dunes and promote geomorphological stability. These interactions are also greatly affected by disturbances associated with sand movement, either in accretion (dune building) or in erosion.
View Article and Find Full Text PDFThe aquatic communities found within the water filled leaves of the pitcher plant, Sarracenia purpurea, have a simple trophic structure providing an ideal system to study microscale interactions between protozoan predators and their bacterial prey. In this study, replicate communities were maintained with and without the presence of the bactivorous protozoan, Colpoda steinii, to determine the effects of grazing on microbial communities. Changes in microbial (Archaea and Bacteria) community structure were assessed using iTag sequencing of 16S rRNA genes.
View Article and Find Full Text PDFClassic niche theory predicts that competing species will evolve to use different resources and interact less, whereas recent niche-converge ideas predict that species evolve to use similar resources and interact more. Most data supporting niche evolution are based on observations of contemporary niche use, whereas experimental support is quite sparse. We followed the evolution of four species of Protozoa during succession in the water-filled leaves of the pitcher plant, Sarracenia purpurea, and found that evolution in multispecies systems follows a surprising pattern.
View Article and Find Full Text PDFBackground: History drives community assembly through differences both in density (density effects) and in the sequence in which species arrive (sequence effects). Density effects arise from predictable population dynamics, which are free of history, but sequence effects are due to a density-free mechanism, arising solely from the order and timing of immigration events. Few studies have determined how components of immigration history (timing, number of individuals, frequency) alter local dynamics to determine community assembly, beyond addressing when immigration history produces historically contingent assembly.
View Article and Find Full Text PDFSuccession is a foundation concept in ecology that describes changes in species composition through time, yet many successional patterns have not been thoroughly investigated. We highlight three hypotheses about succession that are often not clearly stated or tested: (1) individual communities become more stable over time, (2) replicate communities become more similar over time, and (3) diversity peaks at mid-succession. Testing general patterns of succession requires estimates of variation in trajectories within and among replicate communities.
View Article and Find Full Text PDFEcologists have long studied the effect of predators on prey population abundance while evolutionary biologists have measured prey trait evolution in response to predation. Ecological and evolutionary processes were generally thought to occur on different time scales, but recent evidence suggests that evolution may alter the ecological effects of predation over the course of ecological experiments. We used a protozoan and its mosquito-larvae predator, naturally found in the water-filled leaves of pitcher plants, to examine the effect of prey evolution on predator-prey interactions.
View Article and Find Full Text PDF1. In spatially structured communities, habitat destruction can have two effects: first, a main effect that occurs because of the loss of habitat area within a larger region, and a secondary effect due to changes in the spatial arrangement of local communities. Changes to the spatial arrangement can, in turn, affect the migration and extinction rates within local communities.
View Article and Find Full Text PDFSeveral recent, high-impact ecological studies feature natural microcosms as tools for testing effects of fragmentation, metacommunity theory or links between biodiversity and ecosystem processes. These studies combine the microcosm advantages of small size, short generation times, contained structure and hierarchical spatial arrangement with advantages of field studies: natural environmental variance, 'openness' and realistic species combinations with shared evolutionary histories. This enables tests of theory pertaining to spatial and temporal dynamics, for example, the effects of neighboring communities on local diversity, or the effects of biodiversity on ecosystem function.
View Article and Find Full Text PDFA model of species interactions based on their use of shared resources was proposed in 1972 by Robert MacArthur and later expanded in an article (1980) and a book (1982) by David Tilman. This "resource-ratio theory" has been used to make a number of testable predictions about competition and community patterns. We reviewed 1,333 papers that cite Tilman's two publications to determine whether predictions of the resource-ratio theory have been adequately tested and to summarize their general conclusions.
View Article and Find Full Text PDFPurpose: Activation of the platelet-derived growth factor (PDGF) and c-kit receptors has been proposed as important in mediating the growth of AIDS-related Kaposi's sarcoma (KS). We investigated the response of KS to the PDGF receptor (PDGFR)/c-kit inhibitor, imatinib mesylate, and investigated the effect of this therapy on critical signal transduction intermediates.
Patients And Methods: Ten male patients with AIDS-related cutaneous KS, which progressed despite chemotherapy and/or highly active antiretroviral therapy, received imatinib mesylate administered orally, 300 mg twice daily.
Geographic variation in morphology reflects phenotypic responses to environmental gradients and evolutionary history of populations and species and may indicate local or regional changes in environmental conditions. The pitcher plant (Sarracenia purpurea) illustrates these principles. At local scales, its morphology reflects nutrient availability.
View Article and Find Full Text PDFDispersal among local communities can have a variety of effects on species composition and diversity at local and regional scales. Local conditions (e.g.
View Article and Find Full Text PDF