Site-average Natural Source Zone Depletion (NSZD) rates measured from 40 petroleum light non-aqueous phase liquid (LNAPL) source zone sites were compiled from researchers, project reports, and scientific papers. At each site, the following data were compiled: i) general site location; ii) LNAPL fuel type; iii) measurement method, number of locations, and number of measurements per location; and iv) calculated site-average NSZD rate in liters per hectare per year (L/ha/yr) per site and the associated measurement method (i.e.
View Article and Find Full Text PDFDetermining whether changes in groundwater methane concentration are naturally occurring or related to oil and gas operations can be complicated by numerous sources of variability. This study of 10 residential water supply wells in Northeastern Pennsylvania evaluates how i) sampling from different points within the water well system, ii) purging different water volumes prior to sampling, and ii) natural variation over time, affects concentrations of naturally occurring dissolved methane and other water quality parameters. Among the population of wells, all had dissolved methane concentrations >1mg/L.
View Article and Find Full Text PDFAnalysis of dissolved light hydrocarbon gas concentrations (primarily methane and ethane) in water supply wells is commonly used to establish conditions before and after drilling in areas of shale gas and oil extraction. Several methods are currently used to collect samples for dissolved gas analysis from water supply wells; however, the reliability of results obtained from these methods has not been quantified. This study compares dissolved methane and ethane concentrations measured in groundwater samples collected using three sampling methods employed in pre- and post-drill sampling programs in the Appalachian Basin.
View Article and Find Full Text PDFThe National Research Council has estimated that over 126,000 contaminated groundwater sites are unlikely to achieve low ug/L clean-up goals in the foreseeable future. At these sites, cost-effective, long-term monitoring schemes are needed in order to understand the long-term changes in contaminant concentrations. Current monitoring optimization schemes rely on site-specific evaluations to optimize groundwater monitoring frequency.
View Article and Find Full Text PDFThe recent boom in shale gas development in the Marcellus Shale has increased interest in the methods to distinguish between naturally occurring methane in groundwater and stray methane associated with drilling and production operations. This study evaluates the relationship between natural methane occurrence and three principal environmental factors (groundwater redox state, water type, and topography) using two pre-drill datasets of 132 samples from western Pennsylvania, Ohio, and West Virginia and 1417 samples from northeastern Pennsylvania. Higher natural methane concentrations in residential wells are strongly associated with reducing conditions characterized by low nitrate and low sulfate ([NO ] < 0.
View Article and Find Full Text PDFQuantitative information regarding the length and stability condition of groundwater plumes of benzene, methyl tert-butyl ether (MTBE), and tert-butyl alcohol (TBA) has been compiled from thousands of underground storage tank (UST) sites in the United States where gasoline fuel releases have occurred. This paper presents a review and summary of 13 published scientific surveys, of which 10 address benzene and/or MTBE plumes only, and 3 address benzene, MTBE, and TBA plumes. These data show the observed lengths of benzene and MTBE plumes to be relatively consistent among various regions and hydrogeologic settings, with median lengths at a delineation limit of 10 µg/L falling into relatively narrow ranges from 101 to 185 feet for benzene and 110 to 178 feet for MTBE.
View Article and Find Full Text PDFQuantifying the overall progress in remediation of contaminated groundwater has been a significant challenge. We utilized the GeoTracker database to evaluate the progress in groundwater remediation from 2001 to 2011 at over 12,000 sites in California with contaminated groundwater. This paper presents an analysis of analytical results from over 2.
View Article and Find Full Text PDFIsotope ratios of volatile organic compounds (VOCs) in the environment are often of interest in contaminant fate studies. Adsorbent preconcentration-thermal desorption of VOCs can be used to collect environmental vapor samples for compound-specific isotope analysis (CSIA). While active adsorbent samplers offer logistic benefits in handling large volumes of air, their performance in preserving VOCs isotope ratios was not previously tested under sampling conditions corresponding to typical indoor air sampling conditions.
View Article and Find Full Text PDFThe use of measured volatile organic chemical (VOC) concentrations in indoor air to evaluate vapor intrusion is complicated by (i) indoor sources of the same VOCs and (ii) temporal variability in vapor intrusion. This study evaluated the efficacy of utilizing induced negative and positive building pressure conditions during a vapor intrusion investigation program to provide an improved understanding of the potential for vapor intrusion. Pressure control was achieved in five of six buildings where the investigation program was tested.
View Article and Find Full Text PDF