Manganese (Mn) is an essential dietary nutrient, but an excess or accumulation can be toxic. Disease states, such as manganism, are associated with overexposure or accumulation of Mn and are due to the production of reactive oxygen species, free radicals, and toxic metabolites; alteration of mitochondrial function and ATP production; and depletion of cellular antioxidant defense mechanisms. This review focuses on all of the preceding mechanisms and the scientific studies that support them as well as providing an overview of the absorption, distribution, and excretion of Mn and the stability and transport of Mn compounds in the body.
View Article and Find Full Text PDFExcessive manganese (Mn) uptake by brain cells, particularly in regions like the basal ganglia, can lead to toxicity. Mn(2+) is transported into cells via a number of mechanisms, while Mn(3+) is believed to be transported similarly to iron (Fe) via the transferrin (Tf) mechanism. Cellular Mn uptake is therefore determined by the activity of the mechanisms transporting Mn into each type of cell and by the amounts of Mn(2+), Mn(3+) and their complexes to which these cells are exposed; this complicates understanding the contributions of each transporter to Mn toxicity.
View Article and Find Full Text PDFManganese (Mn) toxicity is partially mediated by reduced ATP production. We have used oxidation rate assays--a measure of ATP production--under rapid phosphorylation conditions to explore sites of Mn(2+) inhibition of ATP production in isolated liver, brain, and heart mitochondria. This approach has several advantages.
View Article and Find Full Text PDFCyclophilin D (CypD) is a mitochondrial immunophilin and a key positive regulator of the mitochondrial permeability transition (MPT). Several reports have shown that CypD is overexpressed in various tumors, where it has an anti-apoptotic effect. Because the MPT is a cell death-inducing phenomenon, we hypothesized that the anti-apoptotic effect of CypD is independent of the MPT but is due to its interaction with some key apoptosis regulator, such as Bcl2.
View Article and Find Full Text PDFBiochim Biophys Acta
November 2009
Mitochondria produce around 92% of the ATP used in the typical animal cell by oxidative phosphorylation using energy from their electrochemical proton gradient. Intramitochondrial free Ca(2+) concentration ([Ca(2+)](m)) has been found to be an important component of control of the rate of this ATP production. In addition, [Ca(2+)](m) also controls the opening of a large pore in the inner mitochondrial membrane, the permeability transition pore (PTP), which plays a role in mitochondrial control of programmed cell death or apoptosis.
View Article and Find Full Text PDFMammalian cells take up nanoparticles (NPs) and some NPs increase ROS. We use imaging and measure ROS in parallel to evaluate NP-cell interactions with type I-like alveolar epithelial cells exposed to NPs at 1.2 µg/cm(2) .
View Article and Find Full Text PDFThe mitochondrial permeability transition (MPT) is involved in both necrosis and apoptosis. Cyclophilin D (CypD) is an important component of the MPT. Brain mitochondria are more resistant to the MPT when compared to heart or liver mitochondria.
View Article and Find Full Text PDFRecent studies of speciation of manganese (Mn) in brain mitochondria, neuron-like cells, and astrocytes are reviewed. No evidence is found for oxidation of Mn(2+) complexes to a Mn(3+) complex. The only evidence for any Mn(3+) complex is found in a spectrum essentially identical to that of mitochondrial manganese superoxide dismutase (MnSOD).
View Article and Find Full Text PDFExcessive brain manganese (Mn) can produce a syndrome called "manganism", which correlates with loss of striatal dopamine and cell death in the striatum and globus pallidus. The prevalent hypothesis for the cause of this syndrome has been oxidation of cell components by the strong oxidizing agent, Mn(3+), either formed by oxidation of intracellular Mn(2+) or transported into the cell as Mn(3+). We have recently used X-ray absorption near edge structure spectroscopy (XANES) to determine the oxidation states of manganese complexes in brain and liver mitochondria and in nerve growth factor (NGF)-induced and non-induced PC12 cells.
View Article and Find Full Text PDFDuring etoposide-induced apoptosis in HL-60 cells, cytochrome c release was associated with mitochondrial swelling caused by increased mitochondrial potassium uptake. The mitochondrial permeability transition was also observed; however, it was not the primary cause of mitochondrial swelling. Potassium uptake and swelling of mitochondria were blocked by bcl-2 overexpression.
View Article and Find Full Text PDFExcessive brain Mn can produce toxicity with symptoms resembling parkinsonism. This syndrome, called "manganism," correlates with loss of dopamine in the striatum and cell death in the striatum and globus pallidus. A common hypothesis is that cell damage in Mn toxicity is caused by oxidation of important cell components by Mn3+.
View Article and Find Full Text PDFTreatment of various types of cells with the mitochondrial ATP-sensitive K+ channel opener, diazoxide, preconditions cells to subsequent injuries and inhibits apoptosis. The mechanism of such preconditioning is not well understood. We have studied the effect of diazoxide pretreatment on mitochondrial morphology and function in HL60 cells and on susceptibility of these cells to apoptosis.
View Article and Find Full Text PDFThe literature suggests that the physiological functions for which mitochondria sequester Ca(2+) are (1). to stimulate and control the rate of oxidative phosphorylation, (2). to induce the mitochondrial permeability transition (MPT) and perhaps apoptotic cell death, and (3).
View Article and Find Full Text PDFExcess brain manganese can produce toxicity with symptoms that resemble those of Parkinsonism and causes that remain elusive. Manganese accumulates in mitochondria, a major source of superoxide, which can oxidize Mn2+ to the powerful oxidizing agent Mn3+. Oxidation of important cell components by Mn3+ has been suggested as a cause of the toxic effects of manganese.
View Article and Find Full Text PDFAt the late stage of etoposide-induced apoptosis in HL-60 cells, marked by condensation of chromatin, mitochondria increase in numbers. There is also a drastic increase in mitochondrial DNA content. This increase in mitochondrial numbers and DNA content is an indicator of mitochondrial proliferation during apoptosis.
View Article and Find Full Text PDFBiochim Biophys Acta
April 2003
The mechanism of cytochrome c release from mitochondria in apoptosis remains obscure, although it is known to be regulated by bcl-2 family proteins. Here we describe a set of novel apoptotic phenomena--stimulation of the mitochondrial potassium uptake preceding cytochrome c release and regulation of such potassium uptake by bcl-2 family proteins. As a result of increased potassium uptake, mitochondria undergo moderate swelling sufficient to release cytochrome c.
View Article and Find Full Text PDFRegulation of phenotype in chick tibial growth plate chondrocytes (GPCs) by parathyroid hormone-related peptide (PTHrP) is facilitated via signaling through three pathways: protein kinase A (PKA), protein kinase C (PKC) and inositol-1,4,5-trisphosphate-induced Ca2+ transients. To establish the underlying signaling specificity for PTHrP-regulation of chondrocyte maturation, we examined the separate involvement of each of these three pathways in the PTHrP regulation of key hallmarks of GPC phenotype: stimulation of proliferation and proteoglycan synthesis and reduction of alkaline phosphatase activity and type X collagen expression. Mimicking the PTHrP stimulation either of PKC with 1-oleoyl 2-acetyl glycerol or of a Ca2+ pulse with 65 mM KCl did not lead to PTHrP-like effects on any of the four markers examined.
View Article and Find Full Text PDFAmong the cellular events that are associated with the process of endochondral ossification is an incremental increase in chondrocyte basal intracellular free Ca(2+) concentration ([Ca(2+)](i)) from 50 to 100 nM. To determine if this rise in [Ca(2+)](i) functionally participates in the maturational process of growth plate chondrocytes (GPCs), we examined its effect on several markers of hypertrophy, including annexin V, bone morphogenetic protein-6, type X collagen, and indian hedgehog. Expression of these genes was determined under conditions either where the Ca(2+) chelator EGTA was used to deplete extracellular Ca(2+) and lower [Ca(2+)](i) to < 50 nM or where the extracellular addition of 5 mM CaCl(2) was used to elevate [Ca(2+)](i) to > 100 nM.
View Article and Find Full Text PDF