Alzheimer's disease (AD) is the fifth leading cause of death in older adults, and treatment options are severely lacking. Recent findings demonstrate a strong relationship between skeletal muscle and cognitive function, with evidence supporting that muscle quality and cognitive function are positively correlated in older adults. Conversely, decreased muscle function is associated with a threefold increased risk of cognitive decline.
View Article and Find Full Text PDFPhysical inactivity is the 4th leading cause of death globally and has been shown to significantly increase the risk for developing Alzheimer's Disease (AD). Recent work has demonstrated that exercise prior to breeding produces heritable benefits to the brains of offspring, suggesting that the physical activity status of previous generations could play an important role in one's brain health and their subsequent risk for neurodegenerative diseases. Thus, our study aimed to test the hypothesis that selective breeding for physical inactivity, or for high physical activity, preference produces heritable deficits and enhancements to brain health, respectively.
View Article and Find Full Text PDFPhysical activity (PA) is a non-invasive, cost-effective means of reducing chronic disease. Most US citizens fail to meet PA guidelines, and individuals experiencing chronic stress are less likely to be physically active. To better understand the barriers to maintaining active lifestyles, we sought to determine the extent to which short- versus long-term PA increases stress- and aversion-related markers in wild-type (WT) and low voluntary running (LVR) rats, a unique genetic model of low physical activity motivation.
View Article and Find Full Text PDFUnderstanding the neuro-molecular mechanisms that mediate the quantity of daily physical activity (PA) level is of medical significance, given the tremendous health benefits associated with greater physical activity. Here, we examined the effects of intra-nucleus accumbens (NAc) inhibition of activator protein-1 (AP-1), an important transcriptional factor downstream of cAMP response element binding protein (CREB; a reward-related transcriptional regulator), on voluntary wheel running behavior in wild-type (WT) and low voluntary running (LVR) female rats. Transcriptome analysis of the nucleus accumbens (NAc; a brain region critical for PA reward and motivation) was performed to further determine molecular responses to intra-NAc AP-1 inhibition in these rat lines.
View Article and Find Full Text PDFNeuroinflammation is an early detectable marker of mild cognitive impairment, the transition state between normal cognition and dementia. Resistance-exercise training can attenuate the cognitive decline observed in patients with mild cognitive impairment. However, the underlying mechanisms of resistance training effects are largely unknown.
View Article and Find Full Text PDFMild cognitive impairment (MCI) designates the boundary area between cognitive function in natural aging and dementia, and this is viewed as a therapeutic window to prevent the occurrence of dementia. The current study investigated the neurocognitive effects of oral creatine (Cr) supplementation in young female Wistar rats that received intracerebroventricular injections of lipopolysaccharide (LPS) to mimic MCI. Neuromolecular changes within the dentate gyrus were analyzed following behavioral testing.
View Article and Find Full Text PDFGiven the integral role of nucleus accumbens (NAc) cAMP response element binding protein (CREB) activity in motivational processes, the goal of the current study was to determine whether blunting chronic NAc CREB activity could rescue the low physical activity motivation of female, low voluntary running (LVR) rats. NAc CREB phosphorylation is elevated in these rats, a state previously attributed to deficits in reward valuation. It was recently shown that overexpression of the upstream CREB inhibitor, protein kinase inhibitor alpha (PKIα), increased LVR nightly running by ~threefold.
View Article and Find Full Text PDFTransposable elements (TEs) are mobile DNA and constitute approximately half of the human genome. LINE-1 (L1) is the only active autonomous TE in the mammalian genome and has been implicated in a number of diseases as well as aging. We have previously reported that skeletal muscle L1 expression is lower following acute and chronic exercise training in humans.
View Article and Find Full Text PDFEffective treatments preventing brain neuroinflammatory diseases are lacking. Resistance-exercise training (RT) ameliorates mild cognitive impairment (MCI), a forerunner to neuroinflammatory diseases. However, few studies have addressed the molecular basis by which RT abates MCI.
View Article and Find Full Text PDFThe original version of this article unfortunately contained mistake in Table 2 to where two directionality arrows were inverted.
View Article and Find Full Text PDFA gene was sought that could reverse low voluntary running distances in a model of low voluntary wheel-running behavior. In order to confirm the low motivation to wheel-run in our model does not result from defects in reward valuation, we employed sucrose preference and conditioned place preference for voluntary wheel-access. We observed no differences between our model and wild-type rats regarding the aforementioned behavioral testing.
View Article and Find Full Text PDFPrenatal overnutrition affects development into adulthood and influences risk of obesity. We assessed the transgenerational effect of maternal Western diet (WD) consumption on offspring physical activity. Voluntary wheel running was increased in juvenile (4-7 wk of age), but decreased in adult (16-19 wk of age), F female WD offspring In contrast, no wheel-running differences in F male offspring were observed.
View Article and Find Full Text PDFWhat is the central question of this study? We investigated whether 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) could prevent acute increases in body fat and changes in omental and subcutaneous adipose tissue following the sudden transition from physical activity to physical inactivity. What is the main finding and its importance? AICAR prevented fat gains following the transition from physical activity to inactivity to levels comparable to rats that remained physically active. AICAR and continuous physical activity produced depot-specific changes in cyclin A1 mRNA and protein that were associated with the prevention of fat gain.
View Article and Find Full Text PDFPeak oxygen consumption (V̇o) strongly predicts morbidity and mortality better than other established risk factors, yet mechanisms associated with its age-associated decline are unknown. Our laboratory has shown that V̇o first begins to decrease at the same age of 19-20 wk in both sedentary and wheel-running, female Wistar rats (Toedebusch et al., Physiol Genomics 48: 101-115, 2016).
View Article and Find Full Text PDFKey Points: Physical inactivity, which drastically increases with advancing age, is associated with numerous chronic diseases. The nucleus accumbens (the pleasure and reward 'hub' in the brain) influences wheel running behaviour in rodents. RNA-sequencing and subsequent bioinformatics analysis led us to hypothesize a potential relationship between the regulation of dendritic spine density, the molecules involved in synaptic transmission, and age-related reductions in wheel running.
View Article and Find Full Text PDFThe neuro-molecular mechanisms that regulate the relationship between physical activity level, energy homeostasis regulation, and body fat are unclear. Thus, we aimed to investigate the relationship between mRNAs in the hypothalamic arcuate nucleus (ARC) related to energy homeostasis, wheel running distance, and body fat in ad lib (AL) and calorie-restricted (CR) growing rats. We hypothesized that changes in select mRNAs (Pomc, Cart, Agrp, Npy, Lepr, Insr, Mc4r, Ampk, Sirt1, Sirt3) in CR would be associated with decreases in body fat percentage and increased wheel running behavior.
View Article and Find Full Text PDFWe compared the nucleus accumbens (NAc) transcriptomes of generation 8 (G8), 34-day-old rats selectively bred for low (LVR) versus high voluntary running (HVR) behaviours in rats that never ran (LVR(non-run) and HVR(non-run)), as well as in rats after 6 days of voluntary wheel running (LVR(run) and HVR(run)). In addition, the NAc transcriptome of wild-type Wistar rats was compared. The purpose of this transcriptomics approach was to generate testable hypotheses as to possible NAc features that may be contributing to running motivation differences between lines.
View Article and Find Full Text PDFWe examined how gavage feeding extensively hydrolyzed whey protein (WPH) versus a native whey protein concentrate (WPC) transiently affected serum biochemical profiles in rodents. Male Wistar rats (250-300 g) were 8 h fasted and subsequently fed isonitrogenous amounts of WPH or WPC, or remained unfed (control). Animals were sacrificed 15 min, 30 min, and 60 min post-gavage for serum extraction, and serum was analyzed using untargeted global metabolic profiling via gas chromatography/mass spectrometry (MS) and liquid chromatography/MS/MS platforms.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
June 2013
The purpose of the present study was to partially phenotype male and female rats from generations 8-10 (G8-G10) that had been selectively bred to possess low (LVR) vs. high voluntary running (HVR) behavior. Over the first 6 days with wheels, 34-day-old G8 male and female LVRs ran shorter distances (P < 0.
View Article and Find Full Text PDFObjective: There is debate as to whether fibronectin type III domain containing 5 (FNDC5) and its protein product irisin are therapeutic targets for obesity-associated maladies. Thus, we sought to examine FNDC5 mRNA within skeletal muscle of obese/diabetic-prone Otsuka Long-Evans Tokushima Fatty (OLETF) rats versus lean/healthy Long Evans Tokushima Otsuka (LETO) rats. We hypothesized that FNDC5 expression would be greater in obese (OLETF) versus lean (LETO) animals.
View Article and Find Full Text PDFThe purpose of this study was: aim 1) compare insulin and leucine serum responses after feeding a novel hydrolyzed whey protein (WPH)-based supplement versus a whey protein isolate (WPI) in rats during the post-absorptive state, and aim 2) to perform a thorough toxicological analysis on rats that consume different doses of the novel WPH-based supplement over a 30-day period. In male Wistar rats (~250 g, n = 40), serum insulin and leucine concentrations were quantified up to 120 min after one human equivalent dose of a WPI or the WPH-based supplement. In a second cohort of rats (~250 g, n = 20), we examined serum/blood and liver/kidney histopathological markers after 30 days of feeding low (1human equivalent dose), medium (3 doses) and high (6 doses) amounts of the WPH-based supplement.
View Article and Find Full Text PDFAged skeletal muscle displays increased fibrosis and impaired regeneration. While it is not well characterized how skeletal muscle fibroblasts contribute to these phenomena, transforming growth factor-β1 (TGF-β1) and Delta/Notch signaling have been implicated to influence muscle regeneration. In this study, a unique combination of aging phenotypes is identified in differentiating fibroblasts (myofibroblasts), proliferating fibroblasts, and muscle precursor cells (MPCs) that characterize an impaired regenerative potential observed in aged skeletal muscle.
View Article and Find Full Text PDFThe wheel-lock (WL) model for depressed ambulatory activity in rats has shown metabolic maladies ensuing within 53-173 h after WL begins. We sought to determine if WL beginning after 21-23 days of voluntary running in growing female Wistar rats affected the mRNA profile in the polyribosomal fraction from plantaris muscle shortly following WL. In experiment 1, WL occurred at 0200 and muscles were harvested at 0700 daily at 5 h (WL5h, n = 4), 29 h (WL29h, n = 4), or 53 h (WL53h, n = 4) after WL.
View Article and Find Full Text PDFDopamine signaling in the nucleus accumbens (NAc) has been postulated to influence reward development towards drugs of abuse and exercise. Herein, we used generation 4-5 rats that were selectively bred to voluntary run high (HVR) versus low (LVR) distances in order to examine if dopamine-like 1 (D1) receptor modulation in the NAc differentially affects nightly voluntary wheel running between these lines. A subset of generation 5-6 HVR and LVR rats were also used to study the mRNA expression of key genes related to reward and addiction in the NAc (i.
View Article and Find Full Text PDFIGF-I increases skeletal muscle mass, but whether IGF-I increases type IIb myosin heavy chain (MyHC) transcriptional activity is not known. C2C12 myotubes were cultured with or without IGF-I to determine whether IGF-I increases type IIb MyHC promoter activity, and if so, what region of the promoter might IGF-I signaling regulate. At differentiation days 3 and 4, IGF-I increased type IIb MyHC mRNA and mouse 3.
View Article and Find Full Text PDF