Publications by authors named "Thomas Diemant"

Non-volatile memristors dynamically switch between high (HRS) and low resistance states (LRS) in response to electrical stimuli, essential for electronic memories, neuromorphic computing, and artificial intelligence. High-entropy Prussian blue analogs (HE-PBAs) are promising insertion-type battery materials due to their diverse composition, high structural integrity, and favorable ionic conductivity. This work proposes a non-volatile, bipolar memristor based on HE-PBA.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers applied advanced engineering techniques to improve Prussian blue analogue (PBA) cathodes, exploring both cubic and monoclinic crystal structures.
  • They used various characterization methods to study the electrochemical behavior of these PBAs, revealing key insights into their performance.
  • The cubic PBA structure showed notable advantages after optimization, including better cycling stability, good reversibility, minimal capacity loss, and high thermal stability even under challenging conditions.
View Article and Find Full Text PDF

Herein, the design of novel and safe electrolyte formulations for high-voltage Ni-rich cathodes is reported. The solvent mixture comprising 1,1,2,2-tetraethoxyethane and propylene carbonate not only displays good transport properties, but also greatly enhances the overall safety of the cell thanks to its low flammability. The influence of the conducting salts, that is, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(fluorosulfonyl)imide (LiFSI), and of the additives lithium bis(oxalato)borate (LiBOB) and lithium difluoro(oxalato)borate (LiDFOB) is examined.

View Article and Find Full Text PDF

Layered oxides constitute one of the most promising cathode materials classes for large-scale sodium-ion batteries because of their high specific capacity, scalable synthesis, and low cost. However, their practical use is limited by their low energy density, physicochemical instability, and poor cycling stability. Aiming to mitigate these shortcomings, in this work, we synthesized polycrystalline (PC) and single-crystal (SC) P2-type NaMnNiO (NMNO) cathode materials through a solid-state route and evaluated their physicochemical and electrochemical performance.

View Article and Find Full Text PDF

Low-cost and nontoxic deep eutectic liquid electrolytes (DELEs), such as [AlCl][Urea] (AU), are promising for rechargeable non-aqueous aluminum metal batteries (AMBs). However, their high viscosity and sluggish ion transport at room temperature lead to high cell polarization and low specific capacity, limiting their practical application. Herein, non-solvating 1,2-difluorobenzene (dFBn) is proposed as a co-solvent of DELEs using AU as model to construct a locally concentrated deep eutectic liquid electrolyte (LC-DELE).

View Article and Find Full Text PDF

Aluminum-sulfur (Al-S) batteries are promising energy storage devices due to their high theoretical capacity, low cost, and high safety. However, the high viscosity and inferior ion transport of conventionally used ionic liquid electrolytes (ILEs) limit the kinetics of Al-S batteries, especially at sub-zero temperatures. Herein, locally concentrated ionic liquid electrolytes (LCILE) formed via diluting the ILEs with non-solvating 1,2-difluorobenzene (dFBn) co-solvent are proposed for wide-temperature-range Al-S batteries.

View Article and Find Full Text PDF
Article Synopsis
  • * A synthesized material with a complex composition of multiple metal species showed significantly better cyclability compared to lower-entropy and traditional single-metal PWs.
  • * The research introduces evidence that a high-symmetry crystal structure can improve the operational stability of high-entropy PWs, which is linked to a mechanism that prevents phase transitions and gas evolution during charging and discharging.
View Article and Find Full Text PDF

Lithium metal batteries (LMBs) with nickel-rich cathodes are promising candidates for next-generation high-energy-density batteries, but the lack of sufficiently protective electrode/electrolyte interphases (EEIs) limits their cyclability. Herein, trifluoromethoxybenzene is proposed as a cosolvent for locally concentrated ionic liquid electrolytes (LCILEs) to reinforce the EEIs. With a comparative study of a neat ionic liquid electrolyte (ILE) and three LCILEs employing fluorobenzene, trifluoromethylbenzene, or trifluoromethoxybenzene as cosolvents, it is revealed that the fluorinated groups tethered to the benzene ring of the cosolvents not only affect the electrolytes' ionic conductivity and fluidity, but also the EEIs' composition via adjusting the contribution of the 1-ethyl-3-methylimidazolium cation (Emim ) and bis(fluorosulfonyl)imide anion.

View Article and Find Full Text PDF

The production of renewable feedstocks through the coupled oxygen evolution reaction (OER) with selective organic oxidation requires a perfect balance in the choice of a catalyst and its synthesis access, morphology, and catalytic activity. Herein we report a rapid plasma approach to produce a hierarchical amorphous birnessite-type manganese oxide layer on 3D nickel foam. The as-prepared anode exhibits an OER activity with overpotentials of 220, 250, and 270 mV for 100, 500, and 1000 mA·cm, respectively, and can spontaneously be paired with chemoselective dehydrogenation of benzylamine under both ambient and industrial (6 M KOH, 65 °C) alkaline conditions.

View Article and Find Full Text PDF

Lithium metal is a promising anode material for next-generation high-energy-density batteries but suffers from low stripping/plating Coulombic efficiency and dendritic growth particularly at sub-zero temperatures. Herein, a poorly-flammable, locally concentrated ionic liquid electrolyte with a wide liquidus range extending well below 0 °C is proposed for low-temperature lithium metal batteries. Its all-anion Li solvation and phase-nano-segregation solution structure are sustained at low temperatures, which, together with a solid electrolyte interphase rich in inorganic compounds, enable dendrite-free operation of lithium metal anodes at -20 °C and 0.

View Article and Find Full Text PDF

Rechargeable lithium-metal batteries (LMBs) are anticipated to enable enhanced energy densities, which can be maximized when minimizing the amount of excess lithium in the cell down to zero, also referred to as "zero excess" LMBs. In this case, the only source of lithium is the positive electrode active material─just like in lithium-ion batteries. However, this requires the fully reversible deposition of metallic lithium, i.

View Article and Find Full Text PDF

Calcium (Ca) batteries represent an attractive option for electrochemical energy storage due to physicochemical and economic reasons. The standard reduction potential of Ca (-2.87 V) is close to Li and promises a wide voltage window for Ca full batteries, while the high abundance of Ca in the earth's crust implicates low material costs.

View Article and Find Full Text PDF

Porphyrin derivatives represent an emerging class of redox-active materials for sustainable electrochemical energy storage. However, their structure-performance relationship is poorly understood, which confines their rational design and thus limits access to their full potential. To gain such understanding, we here focus on the role of the metal ion within porphyrin molecules.

View Article and Find Full Text PDF

The development of Li/sulfurized polyacrylonitrile (SPAN) batteries requires electrolytes that can form stable electrolyte/electrode interphases simultaneously on lithium-metal anodes (LMAs) and SPAN cathodes. Herein, a low-flammability locally concentrated ionic liquid electrolyte (LCILE) employing monofluorobenzene (mFBn) as the diluent is proposed for Li/SPAN cells. Unlike non-solvating diluents in other LCILEs, mFBn partially solvates Li , decreasing the coordination between Li and bis(fluorosulfonyl)imide (FSI ).

View Article and Find Full Text PDF

Bulk-type solid-state batteries (SSBs) composed of lithium thiophosphate superionic solid electrolytes (SEs) and high-capacity cathode active materials (CAMs) have recently attracted much attention for their potential application in next-generation electrochemical energy storage. However, compatibility issues between the key components in this kind of battery system are difficult to overcome. Here, we report on a protective cathode coating that strongly reduces the prevalence of detrimental side reactions between CAM and SE during battery operation.

View Article and Find Full Text PDF

Near-infrared (NIR) light-activated photosensitization represents an encouraging therapeutic method in photodynamic therapy, especially for deep tissue penetration. In this context, two-photon activation, i.e.

View Article and Find Full Text PDF
Article Synopsis
  • Multivalent batteries, particularly using polytriphenylamine (PTPAn) composites, show great potential for sustainable energy storage through efficient anion storage.
  • The PTPAn cathode displays impressive performance in magnesium and calcium systems, achieving high cell voltages over 3 V, with significant power and energy densities.
  • With the addition of a calcium-tin (Ca-Sn) alloy anode, these batteries can last for 3000 cycles while maintaining 60% capacity retention, indicating a promising future for divalent ion batteries.
View Article and Find Full Text PDF

Lithium batteries occupy the large-scale electric mobility market raising concerns about the environmental impact of cell production, especially regarding the use of poly(vinylidene difluoride) (teratogenic) and N-methyl-2-pyrrolidone (NMP, harmful). To avoid their use, an aqueous electrode processing route is utilized in which a water-soluble hybrid acrylic-fluoropolymer together with sodium carboxymethyl cellulose is used as binder, and a thin phosphate coating layer is in situ formed on the surface of the nickel-rich cathode during electrode processing. The resulting electrodes achieve a comparable performance to that of NMP-based electrodes in conventional organic carbonate-based electrolyte (LP30).

View Article and Find Full Text PDF

Vanadate compounds, such as VO·HO, are of high interest due to their versatile applications as electrode material for metal-ion batteries. In particular, VO·HO can insert different ions such as Li, Na, K, Mg and Zn. In that case, well resolved crystal structure data, such as crystal unit-cell parameters and atom positions, are needed in order to determine the structural information of the inserted ions in the VO·HO structure.

View Article and Find Full Text PDF

The presence of fluorine, especially in the electrolyte, frequently has a beneficial effect on the performance of lithium batteries owing to, for instance, the stabilization of the interfaces and interphases with the positive and negative electrodes. However, the presence of fluorine is also associated with reduced recyclability and low biodegradability. Herein, we present a single-ion conducting multiblock copolymer electrolyte comprising a fluorine-free backbone and compare it with the fluorinated analogue reported earlier.

View Article and Find Full Text PDF

Conversion/alloying materials (CAMs) provide substantially higher specific capacities than graphite, the state-of-the-art lithium-ion battery anode material. The ability to host much more lithium per unit weight and volume is, however, accompanied by significant volume changes, which challenges the realization of a stable solid electrolyte interphase (SEI). Herein, the comprehensive characterization of the composition and evolution of the SEI on transition metal (TM) doped zinc oxide as CAM model compound, is reported, with a particular focus on the impact of the TM dopant (Fe or Co).

View Article and Find Full Text PDF

In nonaqueous Mg batteries, inactive adsorbed species and the passivation layer formed from the reactive Mg with impurities in the electrolyte seriously affect the Mg metal/electrolyte interface. These adlayers can impede the passage of Mg ions, leading to a high Mg plating/stripping overpotential. Herein, we report the properties of a new additive, bismuth triflate (Bi(OTf)), for synthesizing a chlorine-free Mg electrolyte to enhance Mg plating/stripping from initial cycles.

View Article and Find Full Text PDF

Simple magnesium salts with high electrochemical and chemical stability and adequate ionic conductivity represent a new-generation electrolyte for magnesium (Mg) batteries. Similar to other Mg electrolytes, the simple-salt electrolyte also suffers from high charge-transfer resistance on the Mg surface due to the adsorbed species in the solution. In the current study, we built a model Mg cell system with the Mg[B(hfip)]/DME electrolyte and Chevrel phase MoS cathode, to demonstrate the effect of such anode-electrolyte interfacial properties on the full-cell performance.

View Article and Find Full Text PDF

The oxidation of CO on planar Au/TiO model catalysts was investigated under pressure and temperature conditions similar to those for experiments with more realistic Au/TiO powder catalysts. The effects of a change of temperature, pressure, and gold coverage on the CO oxidation activity were studied. Additionally, the reasons for the deactivation of the catalysts were examined in long-term experiments.

View Article and Find Full Text PDF