Publications by authors named "Thomas Desaive"

Positive end-expiratory pressure results in a sustained positive intrathoracic pressure, which exerts pressure on intrathoracic vessels, resulting in cardiopulmonary interactions. This sustained positive intrathoracic pressure is known to decrease cardiac preload, and thus, decrease venous return, ultimately reducing both the stroke volume and stressed blood volume of the cardiovascular system. Currently, cardiovascular and pulmonary care are provided independently of one another.

View Article and Find Full Text PDF

Mechanical ventilation is well known for having detrimental effects on the cardiovascular system, particularly when using high positive end-expiratory pressure. High positive end-expiratory pressure levels cause a decrease in stroke volume, which, under normal conditions, usually bring about a decrease in stressed blood volume. Stressed blood volume, defined as the total pressure generating volume of the cardiovascular system, has been shown to be a potential index of fluid responsiveness, making it a potentially important diagnostic tool.

View Article and Find Full Text PDF

Background And Objective: Model-based and personalised decision support systems are emerging to guide mechanical ventilation (MV) treatment for respiratory failure patients. However, model-based treatments require resource-intensive clinical trials prior to implementation. This research presents a framework for generating virtual patients for testing model-based decision support, and direct use in MV treatment.

View Article and Find Full Text PDF

Background And Objective: Mechanical ventilation causes adverse effects on the cardiovascular system. However, the exact nature of the effects on haemodynamic parameters is not fully understood. A recently developed cardio-vascular system model which incorporates cardio-pulmonary interactions is compared to the original 3-chamber cardiovascular model to investigate the exact effects of mechanical ventilation on haemodynamic parameters and to assess the trade-off of model complexity and model reliability between the 2 models.

View Article and Find Full Text PDF

Background: Patient-specific lung mechanics during mechanical ventilation (MV) can be identified from measured waveforms of fully ventilated, sedated patients. However, asynchrony due to spontaneous breathing (SB) effort can be common, altering these waveforms and reducing the accuracy of identified, model-based, and patient-specific lung mechanics.

Methods: Changes in patient-specific lung elastance over a pressure-volume (PV) loop, identified using hysteresis loop analysis (HLA), are used to detect the occurrence of asynchrony and identify its type and pattern.

View Article and Find Full Text PDF

Background And Objective: Mechanical ventilation (MV) is the primary form of care for respiratory failure patients. MV settings are based on general clinical guidelines, intuition, and experience. This approach is not patient-specific and patients may thus experience suboptimal, potentially harmful MV care.

View Article and Find Full Text PDF

Background: Surges of COVID-19 infections have led to insufficient supply of mechanical ventilators (MV), resulting in rationing of MV care. In-parallel, co-mechanical ventilation (Co-MV) of multiple patients is a potential solution. However, due to lack of testing, there is currently no means to match ventilation requirements or patients, with no guidelines to date.

View Article and Find Full Text PDF

Background: Intravenous fluid infusions are an important therapy for patients with circulatory shock. However, it is challenging to predict how patients' cardiac stroke volume (SV) will respond, and thus identify how much fluids should be delivered, if any. Model-predicted SV time-profiles of response to fluid infusions could potentially be used to guide fluid therapy.

View Article and Find Full Text PDF

Background: Determining physiological mechanisms leading to circulatory failure can be challenging, contributing to the difficulties in delivering effective hemodynamic management in critical care. Continuous, non-additionally invasive monitoring of preload changes, and assessment of contractility from Frank-Starling curves could potentially make it much easier to diagnose and manage circulatory failure.

Method: This study combines non-additionally invasive model-based methods to estimate left ventricle end-diastolic volume (LEDV) and stroke volume (SV) during hemodynamic interventions in a pig trial (N = 6).

View Article and Find Full Text PDF

Background And Objectives: Accurate, reproducible, and reliable real-time clinical measurement of stroke volume (SV) is challenging. To accurately estimate arterial mechanics and SV by pulse contour analysis, accounting for wave reflection, such as by a tube-load model, is potentially important. This study tests for the first time whether a dynamically identified tube-load model, given a single peripheral arterial input signal and pulse transit time (PTT), provides accurate SV estimates during hemodynamic instability.

View Article and Find Full Text PDF

Background: Glycaemic control (GC) in intensive care unit is challenging due to significant inter- and intra-patient variability, leading to increased risk of hypoglycaemia. Recent work showed higher insulin resistance in female preterm neonates. This study aims to determine if there are differences in inter- and intra-patient metabolic variability between sexes in adults, to gain in insight into any differences in metabolic response to injury.

View Article and Find Full Text PDF

Facemasks have been widely used in hospitals, especially since the emergence of the coronavirus 2019 (COVID-19) pandemic, often severely affecting respiratory functions. Masks protect patients from contagious airborne transmission, and are thus more specifically important for chronic respiratory disease (CRD) patients. However, masks also increase air resistance and thus work of breathing, which may impact pulmonary auscultation and diagnostic acuity, the primary respiratory examination.

View Article and Find Full Text PDF

Surges of COVID-19 infections could lead to insufficient supply of mechanical ventilators, and rationing of needed care. Multiplexing mechanical ventilators (co-MV) to serve multiple patients is a potential temporary solution. However, if patients are ventilated in parallel ventilation, there is currently no means to match ventilation requirements or patients, with no guidelines to date for co-MV.

View Article and Find Full Text PDF

Background: Mechanical ventilation (MV) is a core intensive care unit (ICU) therapy. Significant inter- and intra- patient variability in lung mechanics and condition makes managing MV difficult. Accurate prediction of patient-specific response to changes in MV settings would enable optimised, personalised, and more productive care, improving outcomes and reducing cost.

View Article and Find Full Text PDF

Background And Objectives: Stroke volume (SV) and cardiac output (CO) are important metrics for hemodynamic management of critically ill patients. Clinically available devices to continuously monitor these metrics are invasive, and less invasive methods perform poorly during hemodynamic instability. Pulse wave velocity (PWV) could potentially improve estimation of SV and CO by providing information on changing vascular tone.

View Article and Find Full Text PDF

Background And Objective: Lung mechanics measurements provide clinically useful information about disease progression and lung health. Currently, there are no commonly practiced methods to non-invasively measure both resistive and elastic lung mechanics during tidal breathing, preventing the important information provided by lung mechanics from being utilised. This study presents a novel method to easily assess lung mechanics of spontaneously breathing subjects using a dynamic elastance, single-compartment lung model.

View Article and Find Full Text PDF

Background: STAR is a model-based, personalised, risk-based dosing approach for glycaemic control (GC) in critically ill patients. STAR provides safe, effective control to nearly all patients, using 1-3 hourly measurement and intervention intervals. However, the average 11-12 measurements per day required can be a clinical burden in many intensive care units.

View Article and Find Full Text PDF

Venoarterial extracorporeal life support (VA-ECLS) is used in ICUs (intensive care units) for the most extreme presentations of acute and severe cardiogenic shock, and one of the main issues the clinicians have to deal with is the weaning from VA-ECLS. In this study, a patient-specific model of the cardiovascular system connected to a VA-ECLS is built to improve the understanding of this complex system. Pig experiments are performed to validate the model, and the results are quite promising since the mean difference between experimental data and simulation is smaller than 5% for all the hemodynamic quantities.

View Article and Find Full Text PDF

Identification of end systole is often necessary when studying events specific to systole or diastole, for example, models that estimate cardiac function and systolic time intervals like left ventricular ejection duration. In proximal arterial pressure waveforms, such as from the aorta, the dicrotic notch marks this transition from systole to diastole. However, distal arterial pressure measures are more common in a clinical setting, typically containing no dicrotic notch.

View Article and Find Full Text PDF

Background: Positive end-expiratory pressure (PEEP) at minimum respiratory elastance during mechanical ventilation (MV) in patients with acute respiratory distress syndrome (ARDS) may improve patient care and outcome. The Clinical utilisation of respiratory elastance (CURE) trial is a two-arm, randomised controlled trial (RCT) investigating the performance of PEEP selected at an objective, model-based minimal respiratory system elastance in patients with ARDS.

Methods And Design: The CURE RCT compares two groups of patients requiring invasive MV with a partial pressure of arterial oxygen/fraction of inspired oxygen (PaO2/FiO2) ratio ≤ 200; one criterion of the Berlin consensus definition of moderate (≤ 200) or severe (≤ 100) ARDS.

View Article and Find Full Text PDF