Publications by authors named "Thomas Dahse"

Fomocaine and its new derivative Oe 9000 are local anesthetics in which the inner aromatic moiety carries a phenoxymethyl substituent and is linked to the tertiary amine by an alkylene chain, rendering these compounds considerably lipophilic and increasing their chemical and metabolic stability. Although fomocaine was used for surface anesthesia, the presumed mode of action of fomocaine and Oe 9000, the blockade of voltage-gated Na(+) currents in neurons, has not been investigated. In the present experiments we used the whole-cell mode of the patch-clamp technique and studied the effect of both drugs on voltage-gated Na(+) currents in isolated and cultured dorsal root ganglion (DRG) neurons from adult rats.

View Article and Find Full Text PDF

Fomocaine (CAS 56583-43-6) is a basic ether-type local anaesthetic used in dermatological practice for surface anaesthesia. For many years, modifications of the fomocaine molecule have been pursued, e.g.

View Article and Find Full Text PDF

In utero gene therapy may provide treatment of genetic diseases before significant organ damage, allow permanent genetic correction by reaching stem cell populations, and provide immune tolerance against the therapeutic transgenes and vectors. We have used percutaneous ultrasound-guided injection as a minimally invasive fetal procedure. First-generation adenoviruses encoding the nuclear localizing beta-galactosidase reporter gene or the human factor IX (hFIX) gene, or colloidal carbon were delivered via the umbilical vein (UV, n = 4), heart (intracardiac [IC], n = 2), liver parenchyma (intrahepatic [HE], n = 11), peritoneal cavity (intraperitoneal [IP], n = 14), skeletal musculature ([intramuscular [IM], n = 11), or the amniotic cavity (intraamniotic [IA], n = 14) to early-gestation fetal sheep (0.

View Article and Find Full Text PDF

The fundamental hypotheses behind fetal gene therapy are that it may be possible (1) to achieve immune tolerance of transgene product and, perhaps, vector; (2) to target cells and tissues that are inaccessible in adult life; (3) to transduce a high percentage of rapidly proliferating cells, and in particular stem cells, with relatively low absolute virus doses leading to clonal transgene amplification by integrating vectors; and (4) to prevent early disease manifestation of genetic diseases. This study provides evidence vindicating the first hypothesis; namely, that intravascular prenatal administration of an adenoviral vector carrying the human factor IX (hFIX) transgene can induce immune tolerance of the transgenic protein. Following repeated hFIX protein injection into adult mice, after prenatal vector injection, we found persistence of blood hFIX and absence of hFIX antibodies in 5 of 9 mice.

View Article and Find Full Text PDF