Publications by authors named "Thomas D S Sutton"

Viruses are increasingly recognised as important components of the human microbiome, fulfilling numerous ecological roles including bacterial predation, immune stimulation, genetic diversification, horizontal gene transfer, microbial interactions, and augmentation of metabolic functions. However, our current view of the human gut virome is tainted by previous sequencing requirements that necessitated the amplification of starting nucleic acids. In this study, we performed an original longitudinal analysis of 40 healthy control, 19 Crohn's disease, and 20 ulcerative colitis viromes over three time points without an amplification bias, which revealed and highlighted the interpersonal individuality of the human gut virome.

View Article and Find Full Text PDF
Article Synopsis
  • Marine fungi are underrepresented in global genome projects, and the 1000 fungal genomes (1KFG) initiative aims to explore their diversity and potential industrial applications.
  • The study focused on three marine fungi, identifying a new species, E. atlantica, known for its ability to decompose various marine biomaterials, while other specimens showed fewer biosynthetic capabilities.
  • The research produced valuable genomic data for fungi exclusively found in marine environments, highlighting their ecological and industrial significance and setting the stage for further studies on their unique traits and functions.
View Article and Find Full Text PDF

The human gut microbiome consists of bacteria, archaea, eukaryotes, and viruses. The gut viruses are relatively underexplored. Here, we longitudinally analyzed the gut virome composition in 11 healthy adults: its stability, variation, and the effect of a gluten-free diet.

View Article and Find Full Text PDF

The gut microbiome is widely accepted to have a significant impact on human health yet, despite years of research on this complex ecosystem, the contributions of different forces driving microbial population structure remain to be fully elucidated. The viral component of the human gut microbiome is dominated by bacteriophage, which are known to play crucial roles in shaping microbial composition, driving bacterial diversity, and facilitating horizontal gene transfer. Bacteriophage are also one of the most poorly understood components of the human gut microbiome, with the vast majority of viral sequences sharing little to no homology to reference databases.

View Article and Find Full Text PDF

The human gut virome is thought to significantly impact the microbiome and human health. However, most virome analyses have been performed on a limited fraction of known viruses. Using whole-virome analysis on a published keystone inflammatory bowel disease (IBD) cohort and an in-house ulcerative colitis dataset, we shed light on the composition of the human gut virome in IBD beyond this identifiable minority.

View Article and Find Full Text PDF

The human gut contains a vast array of viruses, mostly bacteriophages. The majority remain uncharacterized, and their roles in shaping the gut microbiome and in impacting on human health remain poorly understood. We performed longitudinal metagenomic analysis of fecal viruses in healthy adults that reveal high temporal stability, individual specificity, and correlation with the bacterial microbiome.

View Article and Find Full Text PDF

Background: The viral component of microbial communities plays a vital role in driving bacterial diversity, facilitating nutrient turnover and shaping community composition. Despite their importance, the vast majority of viral sequences are poorly annotated and share little or no homology to reference databases. As a result, investigation of the viral metagenome (virome) relies heavily on de novo assembly of short sequencing reads to recover compositional and functional information.

View Article and Find Full Text PDF

Background: Faecalibacterium prausnitzii is a ubiquitous member of the human gut microbiome, constituting up to 15% of the total bacteria in the human gut. Substantial evidence connects decreased levels of F. prausnitzii with the onset and progression of certain forms of inflammatory bowel disease, which has been attributed to its anti-inflammatory potential.

View Article and Find Full Text PDF

CrAssphages represent the most abundant virus in the human gut microbiota, but the lack of available genome sequences for comparison has kept them enigmatic. Recently, sequence-based classification of distantly related crAss-like phages from multiple environments was reported, leading to a proposed familial-level taxonomic group. Here, we assembled the metagenomic sequencing reads from 702 human fecal virome/phageome samples and analyzed 99 complete circular crAss-like phage genomes and 150 contigs ≥70 kb.

View Article and Find Full Text PDF

Background: Recent studies have demonstrated that the human gut is populated by complex, highly individual and stable communities of viruses, the majority of which are bacteriophages. While disease-specific alterations in the gut phageome have been observed in IBD, AIDS and acute malnutrition, the human gut phageome remains poorly characterised. One important obstacle in metagenomic studies of the human gut phageome is a high level of discrepancy between results obtained by different research groups.

View Article and Find Full Text PDF