J Pediatric Infect Dis Soc
November 2024
Background: The field of long COVID research is rapidly evolving, however, tools to assess and monitor symptoms and recovery of the disease are limited. The objective of the present study was to develop a new patient-reported outcomes instrument, the Symptoms Evolution of Long COVID‑19 (SE-LC19), and establish its content validity.
Methods: The 40-item SE-LC19 instrument was developed based on patient-relevant empirical evidence from scientific literature and clinical guidelines that reported symptoms specific to long COVID.
Background: While immunotherapy has been highly successful for the treatment of some cancers, for others, the immune response to tumor antigens is weak leading to treatment failure. The resistance of tumors to checkpoint inhibitor therapy may be caused by T cell exhaustion resulting from checkpoint activation.
Methods: In this study, lentiviral vectors that expressed T cell epitopes of an experimentally introduced tumor antigen, ovalbumin, or the endogenous tumor antigen, Trp1 were developed.
Objectives: There is limited qualitative research on patients' experiences with long COVID-19, and how specific symptoms impact their daily lives. The study aimed to understand patients' lived experiences of long COVID-19 and to develop a conceptual model representing the symptoms and their impact on overall quality of life.
Setting: Qualitative study consisting of a comprehensive literature review, and in-depth clinician and patient semistructured interviews.
Lentiviral vector-based dendritic cell vaccines induce protective T cell responses against viral infection and cancer in animal models. In this study, we tested whether preventative and therapeutic vaccination could be achieved by direct injection of antigen-expressing lentiviral vector, obviating the need for ex vivo transduction of dendritic cells. Injected lentiviral vector preferentially transduced splenic dendritic cells and resulted in long-term expression.
View Article and Find Full Text PDFDendritic cell vaccines are a promising strategy for the treatment of cancer and infectious diseases but have met with mixed success. We report on a lentiviral vector-based dendritic cell vaccine strategy that generates a cluster of differentiation 8 (CD8) T cell response that is much stronger than that achieved by standard peptide-pulsing approaches. The strategy was tested in the mouse lymphocytic choriomeningitis virus (LCMV) model.
View Article and Find Full Text PDFHIV-1-infected individuals are treated with lifelong antiretroviral drugs to control the infection. A means to strengthen the antiviral T cell response might allow them to control viral loads without antiretroviral drugs. We report the development of a lentiviral vector-based dendritic cell (DC) vaccine in which HIV-1 antigen is co-expressed with CD40 ligand (CD40L) and a soluble, high-affinity programmed cell death 1 (PD-1) dimer.
View Article and Find Full Text PDFFront Immunol
September 2016
[This corrects the article on p. 243 in vol. 7, PMID: 27446074.
View Article and Find Full Text PDFThe development of an effective HIV vaccine to prevent and/or cure HIV remains a global health priority. Given their central role in the initiation of adaptive immune responses, dendritic cell (DC)-based vaccines are being increasingly explored as immunotherapeutic strategies to enhance HIV-specific T cells in infected individuals and, thus, promote immune responses that may help facilitate a functional cure. HIV-1-based lentiviral (LV) vectors have inherent advantages as DC vaccine vectors due to their ability to transduce non-dividing cells and integrate into the target cell genomic DNA, allowing for expression of encoded antigens over the lifespan of the cell.
View Article and Find Full Text PDFData that can be used to guide perioperative antibiotic prophylaxis in our era of emerging antibiotic resistance are limited. We reviewed orthopedic surgeries complicated by surgical site infections (SSIs). Eighty percent of 69 arthroplasty and 80 spine fusion SSIs were infected with Gram-positive bacteria; most were staphylococcal species; and more than 25% of Staphylococcus aureus and more than 65% of coagulase-negative staphylococci were methicillin-resistant.
View Article and Find Full Text PDFThe deoxynucleoside triphosphohydrolase SAMHD1 restricts retroviral replication in myeloid cells. Human immunodeficiency virus type 2 (HIV-2) and a simian immunodeficiency virus from rhesus macaques (SIVmac) encode Vpx, a virion-packaged accessory protein that counteracts SAMHD1 by inducing its degradation. SAMHD1 is thought to work by depleting the pool of intracellular deoxynucleoside triphosphates but has also been reported to have exonuclease activity that could allow it to degrade the viral genomic RNA or viral reverse-transcribed DNA.
View Article and Find Full Text PDFDendritic cells are professional antigen-presenting cells of the immune system and are major producers of type-I interferon. Their role in HIV-1 infection is not well understood. They express CD4 and CCR5 yet appear to be resistant to infection.
View Article and Find Full Text PDFVanishing bile duct syndrome (VBDS) is a group of rare disorders characterized by ductopenia, the progressive destruction and disappearance of intrahepatic bile ducts leading to cholestasis. Described in association with medications, autoimmune disorders, cancer, transplantation, and infections, the specific mechanisms of disease are not known. To date, only 4 cases of VBDS have been reported in human immunodeficiency virus (HIV) infected patients.
View Article and Find Full Text PDFObjective: HIV infection is associated with coagulation abnormalities and significantly increased risk of venous thrombosis. It has been shown that higher plasma levels of coagulation and inflammatory biomarkers predicted mortality in HIV. We investigated the relationship between venous thrombosis and HIV-related characteristics, traditional risk factors of hypercoagulability, and pre-event levels of biomarkers.
View Article and Find Full Text PDF