Publications by authors named "Thomas D McGrath"

High yields of novel macropolyhedral selenaboranes are reported. Reactions of the monoanions of the - and -isomers of BH with powdered selenium in THF variously give new macropolyhedral selenaboranes: 19-vertex [SeBH] anion , 19-vertex [SeBH] anion , 20-vertex [SeBH] anion , and 19-vertex [SeBH] anion . Single-cluster [-SeBH] anion and neutral -SeBH also result.

View Article and Find Full Text PDF

Intramolecular hydroxyl attack upon iron-coordinated nitriles in a {closo-2,1,10-FeC2B7} system forms imidates that allow construction of a tetra-cluster {FeC2B7}-{C2Co2}-{C2Co2}-{FeC2B7} molecule.

View Article and Find Full Text PDF

Addition of PPh 2Cl and Tl[PF 6] to CH 2Cl 2 solutions of [N(PPh 3) 2][6,6,6-(CO) 3- closo-6,1-FeCB 8H 9] ( 1) affords the isomeric B-substituted species [6,6,6-(CO) 3- n-(PHPh 2)- closo-6,1-FeCB 8H 8] [ n = 7 ( 2a) or 10 ( 2b)]. Deprotonation (NaH) of the phosphine ligand in 2a, with subsequent addition of [IrCl(CO)(PPh 3) 2] and Tl[PF 6], yields the neutral, zwitterionic complex [6,6,6-(CO) 3-4,7-mu-{Ir(H)(CO)(PPh 3) 2PPh 2}- closo-6,1-FeCB 8H 7] ( 3), which contains a B-P-Ir- B ring. Alternatively, deprotonation using NEt 3, followed by addition of HC[triple bond]CCH 2Br, affords [6,6,6-(CO) 3-7-(PPh 2CCMe)- closo-6,1-FeCB 8H 8] ( 4).

View Article and Find Full Text PDF

Ultraviolet irradiation of [PPh(4)][closo-1-CB(8)H(9)] with [Re(2)(CO)(10)] in THF (tetrahydrofuran) at ambient temperature affords the dirhenacarborane anion [6,10-{Re(CO)(4)}-10-(micro-H)-6,6,6-(CO)(3)-closo-6,1-ReCB(8)H(8)]-, isolated as its [PPh(4)]+ salt (1). Further irradiation of 1 yields a second isomeric anion [6,10-{Re(CO)(4)}-6-(micro-H)-10,10,10-(CO)(3)-closo-10,1-ReCB(8)H(8)]- that was characterized as a [N(PPh(3))(2)]+ salt (2). Reaction of 1 with NOBF(4) produces the neutral dirhenacarborane compound [8,10-{Re(CO)(4)}-8,10-(micro-H)2-6,6-(CO)(2)-6-NO-closo-6,1-ReCB(8)H(7)] (3).

View Article and Find Full Text PDF

Reaction between [PPh4][closo-4-CB8H9] and [Ru3(CO)12] in refluxing toluene affords the unprecedented hexaruthenium metallacarborane salt [PPh4][2,3,7-{Ru(CO)3}-2,6,11-{Ru(CO)3}-7,11,12-{Ru(CO)3}-3,6,12-(micro-H)3-2,2,7,7,11,11-(CO)6-closo-2,7,11,1-Ru3CB8H6] (1a), which contains a planar Ru6 'raft' supported by a {CB8} monocarborane cluster. Addition of [CuCl(PPh3)]4 and Tl[PF6] to a CH2Cl2 solution of 1a results in simple cation replacement, forming the analogous [Cu(PPh3)3]+ salt (1b). The phenyl-substituted monocarborane [NEt4][6-Ph-nido-6-CB9H11] reacts with [Ru3(CO)12] in refluxing 1,2-dimethoxyethane to afford the pentaruthenium cluster species [N(PPh3)2][2,3,7-{Ru(CO)3}-3,4,8-{Ru(CO)3}-7,8-(micro-H)2-1-Ph-2,2,3,3,4,4-(CO)6-hypercloso-2,3,4,1-Ru3CB8H6] (2), after addition of [N(PPh3)2]Cl.

View Article and Find Full Text PDF

The ferracarborane [N(PPh3)2][6,6,6,10,10,10-(CO)6-closo-6,10,1-Fe2CB7H8] reacts in CH2Cl2 with 3 molar equivalents of Ag[PF6] to yield the trifluoro-substituted species [N(PPh3)2][7,8,9-F3-6,6,6,10,10,10-(CO)6-closo-6,10,1-Fe2CB7H5]. Compound undergoes structural rearrangement in toluene at reflux temperatures, forming [N(PPh3)2][8,9,10-F3-6,6,6,7,7,7-(CO)6-closo-6,7,1-Fe2CB7H5]. Alternatively, reaction of either or with a 10-fold excess of Ag[PF6] in CH2Cl2 forms two species: namely, [N(PPh3)2][2,7,9,10-F4-6,6,6,8,8,8-(CO)6-closo-6,8,1-Fe2CB7H4], in which one further B-F substitution has occurred and the {Fe2CB7} cluster core has rearranged, plus a mono-iron co-product, [N(PPh3)2][3,8,9-F3-7,7,7-(CO)3-closo-7,1-FeCB7H5] that is formed by polyhedral contraction.

View Article and Find Full Text PDF

The docosahedral metallacarboranes 4,4-(PMe(2)Ph)2-4,1,6-closo-PtC(2)B(10)H(12), 4,4-(PMe(2)Ph)2-4,1,10-closo-PtC(2)B(10)H(12), and [N(PPh(3))2][4,4-cod-4,1,10-closo-RhC(2)B(10)H(12)] were prepared by reduction/metalation of either 1,2-closo-C(2)B(10)H(12) or 1,12-closo-C(2)B(10)H(12). All three species were fully characterized, with a particular point of interest of the latter being the conformation of the {ML2} fragment relative to the carborane ligand face. Comparison with conformations previously established for six other ML(2)C(2)B(10) species of varying heteroatom patterns (4,1,2-MC(2)B(10), 4,1,6-MC(2)B(10), 4,1,10-MC(2)B(10), and 4,1,12-MC(2)B(10)) reveals clear preferences.

View Article and Find Full Text PDF

The nine-vertex ferracarborane salt [N(PPh3)2][7,7,7-(CO)3-closo-7,1-FeCB7H8] (1) reacts with an excess of [IrCl(CO)(PPh3)2] in the presence of Tl[PF6] to form, successively, the bimetallic species [7,7,9,9,9-(CO)5-7-PPh3-closo-7,9,1-IrFeCB6H7] (3), in which one {BH}- vertex has formally been subrogated by an {Ir(CO)2(PPh3)} unit, and the trimetallic complex [6,7,9-{Ir(CO)(PPh3)2}-7,9-(mu-H)2-7,9,9-(CO)3-7-PPh3-closo-7,9,1-IrFeCB6H6] (5), which contains an {FeIr2} triangle. The {FeIrCB6} core in 5 resembles that in 3 with, in addition, the Fe..

View Article and Find Full Text PDF

The reagent [arachno-4-CB8H14] reacts with [Fe3(CO)12] in tetrahydrofuran (THF) at reflux temperatures, followed by addition of [N(PPh3)2]Cl, to afford [N(PPh3)2][4,9-{Fe(CO)4}-9,9,9-(CO)3-arachno-9,6-FeCB8H11] (3). In the anion of 3, one iron atom is part of the open CBBFeBB face of a 10-vertex {arachno-9,6-FeCB8} cage, to which the second iron atom is attached via an Fe-Fe bond and an additional exo-polyhedral Fe-B sigma bond. Upon heating 3 in refluxing toluene, the closed 10-vertex species [N(PPh3)2][2,2,2-(CO)3-closo-2,1-FeCB8H9] (4) is obtained, whereas the isomeric compound [N(PPh3)2][6,6,6-(CO)3-closo-6,1-FeCB8H9] (5) is isolated upon heating [closo-4-CB8H9]- and [Fe3(CO)12] in refluxing THF with subsequent addition of [N(PPh3)2]Cl.

View Article and Find Full Text PDF

Treatment of 7-NH(2)Bu(t)-nido-7-CB(10)H(12) in tetrahydrofuran (THF) with LiBu(n)(3 equiv) and then [ReBr(CO)(3)(THF)(2)] gives the rhenacarborane dianion [1-NHBu(t)-2,2,2-(CO)(3)-closo-2,1-ReCB(10)H(10)](2-), isolated as the bis-[N(PPh(3))(2)](+) salt (4). Iodine oxidation of this Re(I) intermediate gives the Re(III) complex [1,2-mu-NHBu(t)-2,2,2-(CO)(3)-closo-2,1-ReCB(10)H(10)] 6 in which the carborane functions formally as an 8-electron (6pi+ 2sigma) donor. Reaction of with ligands L in the presence of Me(3)NO gives substituted products [1,2-mu-NHBu(t)-2,2-(CO)(2)-2-L-closo-2,1-ReCB(10)H(10)][L = PPh(3)(7a), CNXyl (7b; Xyl = C(6)H(3)Me(2)-2,6), or Bu(t)C triple bond CH (7c)].

View Article and Find Full Text PDF

Treatment of the 11-vertex carborane anion [closo-2-CB(10)H(11)](-) with Ni(0) reagents in tetrahydrofuran (THF) affords-via oxidative insertion reactions-12-vertex Ni(II) complexes, isolated as the salts [N(PPh(3))(2)][2,2-L(2)-closo-2,1-NiCB(10)H(11)] (L = CO (1a), CNBu(t) (1b), and CNXyl (1c; Xyl = C(6)H(3)Me(2)-2,6); L(2) = cod (1d; cod = 1,2:5,6-eta-cyclo-octa-1,5-diene)). One CO ligand in 1a is readily replaced by donors L' in the presence of Me(3)NO to give the species [N(PPh(3))(2)][2-CO-2-L'-closo-2,1-NiCB(10)H(11)] (L' = PEt(3) (1e), PPh(3) (1f), CNBu(t) (1g), and CNXyl (1h)). The anionic complexes themselves readily react with hydride abstracting reagents in the presence of donor ligands to yield zwitterionic complexes in which boron vertexes bear substituents that are bound through C, N, or O atoms.

View Article and Find Full Text PDF

The compound [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)6}-closo-2,1-RuCB10H8] 1a reacts with PMe3 or PCy3(Cy = cyclo-C6H11) to give the structurally different species [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)5(PMe3)}-closo-2,1-RuCB10H8] 4 and [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(CO)5(PCy3)}-closo-2,1-RuCB10H8]5, respectively. A symmetrically disubstituted product [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)4(PMe3)2}-closo-2,1-RuCB10H8] 6 is obtained using an excess of PMe3. In contrast, the chelating diphosphines 1,1'-(PPh2)2-Fe(eta-C5H4)2 and 1,2-(PPh2)2-closo-1,2-C2B10H10 react with 1a to yield oxidative-insertion species [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(micro-[1',1''-(PPh2)2-Fe(eta-C5H4)2])(CO)4}-closo-2,1-RuCB10H8] 7 and [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(CO)4(1',2'-(PPh2)2-closo-1',2'-C2B10H10)}-closo-2,1-RuCB10H8] 8, respectively.

View Article and Find Full Text PDF

The manganacarborane dianion in [N(PPh(3))(2)][NEt(4)][1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(9)] (1b) reacts with cationic transition metal-ligand fragments to give products in which the electrophilic metal groups (M') are exo-polyhedrally attached to the {closo-1,2-MnCB(9)} cage system via three-center two-electron B-H --> M' linkages and generally also by Mn-M' bonds. With {Cu(PPh(3))}(+), the Cu-Mn-Cu trimetallic species [1,6-{Cu(PPh(3))}-1,7-{Cu(PPh(3))}-6,7-(mu-H)(2)-1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(7)] (3a) is formed, whereas reactions with {M'(dppe)}(2+) (M' = Ni, Pd; dppe = Ph(2)PCH(2)CH(2)PPh(2)) give [1,3-{Ni(dppe)}-3-(mu-H)-1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(8)] (5a) and [1,3,6-{Pd(dppe)}-3,6-(mu-H)(2)-1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(7)] (5b), both of which contain M'-Mn bonds. The latter reaction with M' = Pt affords [3,6-{Pt(dppe)}-3,6-(mu-H)(2)-1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(7)] (6), which lacks a Pt-Mn connectivity.

View Article and Find Full Text PDF

Treatment of the isomeric 12-vertex nickelacarbaborane salts [NEt(4)][3-(eta3)-C(3)H(5))-closo-3,1,2-NiC(2)B(9)H(11)] and [NEt(4)][2-(eta3)-C(3)H(5))-closo-2,1,7-NiC(2)B(9)H(11)] with [CuCl(PPh(3))](4) and Tl[PF(6)] affords the zwitterionic bimetallic species [3-(eta3)-C(3)H(5))-3,4,8-[Cu(PPh(3))]-4,8-(mu-H)(2)-closo-3,1,2-NiC(2)B(9)H(9)] and [2-(eta3)-C(3)H(5))-2,6,11-(Cu(PPh(3)))-6,11-(mu-H)(2)-closo-2,1,7-NiC(2)B(9)H(9)], respectively. Similarly, the 13-vertex nickelacarbaborane [NEt(4)][4-(eta3)-C(3)H(5))-closo-4,1,6-NiC(2)B(10)H(12)] reacts with sources of mono-cationic metal fragments to form [4-(eta3)-C(3)H(5))-7,8,13-(Cu(PPh(3)))-7,8,13-(mu-H)(3)-4,1,6-closo-NiC(2)B(10)H(9)], [4-(eta3)-C(3)H(5))-3,8-(Rh(PPh(3))(2))-3,8-(mu-H)(2)-4,1,6-closo-NiC(2)B(10)H(10)] and [4-(eta3)-C(3)H(5))-3,7,8-(RuCl(PPh(3))(2))-3,7,8-(mu-H)(3)-4,1,6-closo-NiC(2)B(10)H(9)]. The molecular structures of these five new bimetallic compounds were determined by X-ray diffraction studies, confirming that exopolyhedral Cu, Rh and Ru fragments are attached to the cluster via B-H[right harpoon up]M agostic-type interactions and, in the case of the (NiC(2)B(9)) species, by a metal-metal bond.

View Article and Find Full Text PDF

The nickelacarboranes [NEt(4)][2-(eta(3)-C(3)H(4)R)-closo-2,1,7-NiC(2)B(9)H(11)] (R = H (1a), Ph (1b)) have been synthesized via reaction between [Na](2)[nido-7,9-C(2)B(9)H(11)] and [Ni(2)(micro-Br)(2)(eta(3)-C(3)H(4)R)(2)] in THF (THF = tetrahydrofuran), followed by addition of [NEt(4)]Cl. Protonation of 1a in the presence of a donor ligand L affords the complexes [2,2-L(2)-closo-2,1,7-NiC(2)B(9)H(11)] (L = CO (2), CNBu(t) (3)). Addition of PEt(3) (1 equiv) to 2 produces quantitative conversion to [2-CO-2-PEt(3)-closo-2,1,7-NiC(2)B(9)H(11)], 4.

View Article and Find Full Text PDF

An eleven-vertex manganese-monocarbaborane dianion, upon one-electron oxidation, gives a stable radical monoanion in which the unpaired electron is delocalized over the cluster.

View Article and Find Full Text PDF

The butadienyl moiety in the title compound is bound to both cage-boron and rhenium vertices, and arises from coupling of two alkyne molecules at the rhenium centre, unprecedented in metallacarbaborane chemistry.

View Article and Find Full Text PDF

The reagent Li(2)[7-NMe(3)-nido-7-CB(10)H(10)] reacts with [Mo(CO)(3)(NCMe)(3)] in THF-NCMe (THF = tetrahydrofuran) to give a molybdenacarborane intermediate which, upon oxidation by CH(2)[double bond]CHCH(2)Br or I(2) and then addition of [N(PPh(3))(2)]Cl, gives the salts [N(PPh(3))(2)][2,2,2-(CO)(3)-2-X-3-NMe(3)-closo-2,1-MoCB(10)H(10)] (X = Br (1) or I (2)). During the reaction, the cage-bound NMe(3) substituent is transferred from the cage-carbon atom to an adjacent cage-boron atom, a feature established spectroscopically in 1 and 2, and by X-ray diffraction studies on several of their derivatives. When [Rh(NCMe)(3)(eta(5)-C(5)Me(5))][BF(4)](2) is used as the oxidizing agent, the trimetallic compound [2,2,2-(CO)(3)-7-mu-H-2,7,11-[Rh(2)(mu-CO)(eta(5)-C(5)Me(5))(2)]-closo-2,1-MoCB(10)H(9)] (10) is formed, the NMe(3) group being lost.

View Article and Find Full Text PDF