Publications by authors named "Thomas D Christian"

Article Synopsis
  • Researchers have developed a method for single-molecule protein sequencing that accurately identifies peptide sequences in real time.
  • This technique uses dye-labeled amino acid recognizers and aminopeptidases to probe single peptides while recording fluorescence data on a semiconductor chip.
  • The method shows potential for detailed analysis of proteins, including the ability to detect single amino acid changes and modifications, paving the way for more accessible proteomic research.
View Article and Find Full Text PDF

Human polypyrimidine-binding splicing factor (PSF/SFPQ) is a tumor suppressor protein that regulates the gene expression of several proto-oncogenes and binds to the 5'-polyuridine negative-sense template (5'-PUN) of some RNA viruses. The activity of PSF is negatively regulated by long-noncoding RNAs, human metastasis associated in lung adenocarcinoma transcript-1 and murine virus-like 30S transcript-1 (VL30-1). PSF is a 707-amino acid protein that has a DNA-binding domain and two RNA recognition motifs (RRMs).

View Article and Find Full Text PDF

Minor groove hydrogen bonding (HB) interactions between DNA polymerases (pols) and N3 of purines or O2 of pyrimidines have been proposed to be essential for DNA synthesis from results obtained using various nucleoside analogues lacking the N3 or O2 contacts that interfered with primer extension. Because there has been no direct structural evidence to support this proposal, we decided to evaluate the contribution of minor groove HB interactions with family B pols. We have used RB69 DNA pol and 3-deaza-2'-deoxyadenosine (3DA), an analogue of 2-deoxyadenosine, which has the same HB pattern opposite T but with N3 replaced with a carbon atom.

View Article and Find Full Text PDF

The catalytic mechanism of DNA polymerases involves multiple steps that precede and follow the transfer of a nucleotide to the 3'-hydroxyl of the growing DNA chain. Here we report a single-molecule approach to monitor the movement of E. coli DNA polymerase I (Klenow fragment) on a DNA template during DNA synthesis with single base-pair resolution.

View Article and Find Full Text PDF

Benzo[a]pyrene (B[a]P) is a potent environmental carcinogen that is metabolized into diol epoxides that react with exocyclic amines in DNA. These DNA adducts have been shown to block DNA replication by high-fidelity polymerases and induce both base substitution and frame-shift mutations. To improve our understanding of the molecular mechanism of B[a]P-induced mutagenesis, a fluorescence resonance energy transfer (FRET) method was developed in which the (+)- or (-)-trans-anti-B[a]P-N(2)-dG adducts, positioned in the active site of DNA polymerase I (Klenow fragment), serve as donor fluorophores to an acceptor molecule positioned on the DNA primer strand.

View Article and Find Full Text PDF
Article Synopsis
  • PAI-1 binds to serine proteinases like tPA and uPA through interactions between their variable and reactive center regions, influencing its inhibitory activity.
  • Research techniques showed that specific mutations in PAI-1 significantly affected its ability to inhibit tPA, while only minor effects were observed with uPA and no impact with beta-trypsin.
  • The results indicate that these exosite interactions are crucial for the formation of the Michaelis complex, particularly emphasizing the importance of the P5' residue in inhibiting tPA more effectively.
View Article and Find Full Text PDF