Publications by authors named "Thomas D Albright"

The modern canon of open science consists of five "schools of thought" that justify unfettered access to the fruits of scientific research: i) public engagement, ii) democratic right of access, iii) efficiency of knowledge gain, iv) shared technology, and v) better assessment of impact. Here, we introduce a sixth school: due process. Due process under the law includes a right to "discovery" by a defendant of potentially exculpatory evidence held by the prosecution.

View Article and Find Full Text PDF

When it comes to questions of fact in a legal context-particularly questions about measurement, association, and causality-courts should employ ordinary standards of applied science. Applied sciences generally develop along a path that proceeds from a basic scientific discovery about some natural process to the formation of a theory of how the process works and what causes it to fail, to the development of an invention intended to assess, repair, or improve the process, to the specification of predictions of the instrument's actions and, finally, empirical validation to determine that the instrument achieves the intended effect. These elements are salient and deeply embedded in the cultures of the applied sciences of medicine and engineering, both of which primarily grew from basic sciences.

View Article and Find Full Text PDF

For nearly 25 y, the Committee on Science, Technology, and Law (CSTL), of the National Academies of Sciences, Engineering, and Medicine, has brought together distinguished members of the science and law communities to stimulate discussions that would lead to a better understanding of the role of science in legal decisions and government policies and to a better understanding of the legal and regulatory frameworks that govern the conduct of science. Under the leadership of recent CSTL co-chairs David Baltimore and David Tatel, and CSTL director Anne-Marie Mazza, the committee has overseen many interdisciplinary discussions and workshops, such as the international summits on human genome editing and the science of implicit bias, and has delivered advisory consensus reports focusing on topics of broad societal importance, such as dual use research in the life sciences, voting systems, and advances in neural science research using organoids and chimeras. One of the most influential CSTL activities concerns the use of forensic evidence by law enforcement and the courts, with emphasis on the scientific validity of forensic methods and the role of forensic testimony in bringing about justice.

View Article and Find Full Text PDF

Scientific evidence is frequently offered to answer questions of fact in a court of law. DNA genotyping may link a suspect to a homicide. Receptor binding assays and behavioral toxicology may testify to the teratogenic effects of bug repellant.

View Article and Find Full Text PDF
How to make better forensic decisions.

Proc Natl Acad Sci U S A

September 2022

Much of forensic practice today involves human decisions about the origins of patterned sensory evidence, such as tool marks and fingerprints discovered at a crime scene. These decisions are made by trained observers who compare the evidential pattern to an exemplar pattern produced by the suspected source of the evidence. The decision consists of a determination as to whether the two patterns are similar enough to have come from the same source.

View Article and Find Full Text PDF

The traditional view of neural computation in the cerebral cortex holds that sensory neurons are specialized, i.e., selective for certain dimensions of sensory stimuli.

View Article and Find Full Text PDF

A large and highly valuable category of forensic evidence consists of patterned impressions created during the perpetration of a crime. These crime scene artifacts, such as fingerprints or tire tracks, offer visual sensory information that is assessed by trained human observers and compared to sensory experiences elicited by model patterns that would have been produced under a hypothesized set of conditions. By means of this "forensic feature comparison," the observer makes a judgment about whether the evidence and the model are sufficiently similar to support common origin.

View Article and Find Full Text PDF

Eyewitness misidentification accounts for 70% of verified erroneous convictions. To address this alarming phenomenon, research has focused on factors that influence likelihood of correct identification, such as the manner in which a lineup is conducted. Traditional lineups rely on overt eyewitness responses that confound two covert factors: strength of recognition memory and the criterion for deciding what memory strength is sufficient for identification.

View Article and Find Full Text PDF

Cortical sensory neurons are characterized by selectivity to stimulation. This selectivity was originally viewed as a part of the fundamental "receptive field" characteristic of neurons. This view was later challenged by evidence that receptive fields are modulated by stimuli outside of the classical receptive field.

View Article and Find Full Text PDF

Sensory systems adapt to environmental change. It has been argued that adaptation should have the effect of optimizing sensitivity to the new environment. Here we consider a framework in which this premise is made concrete using an economic normative theory of visual motion perception.

View Article and Find Full Text PDF

The timing of brief stationary sounds has been shown to alter the perceived speed of visual apparent motion (AM), presumably by altering the perceived timing of the individual frames of the AM stimuli and/or the duration of the interstimulus intervals (ISIs) between those frames. To investigate the neural correlates of this "temporal ventriloquism" illusion, we recorded spiking and local field potential (LFP) activity from the middle temporal area (area MT) in awake, fixating macaques. We found that the spiking activity of most MT neurons (but not the LFP) was tuned for the ISI/speed (these parameters covaried) of our AM stimuli but that auditory timing had no effect on that tuning.

View Article and Find Full Text PDF

Forensic science is critical to the administration of justice. The discipline of forensic science is remarkably complex and includes methodologies ranging from DNA analysis to chemical composition to pattern recognition. Many forensic practices developed under the auspices of law enforcement and were vetted primarily by the legal system rather than being subjected to scientific scrutiny and empirical testing.

View Article and Find Full Text PDF
Why eyewitnesses fail.

Proc Natl Acad Sci U S A

July 2017

Eyewitness identifications play an important role in the investigation and prosecution of crimes, but it is well known that eyewitnesses make mistakes, often with serious consequences. In light of these concerns, the National Academy of Sciences recently convened a panel of experts to undertake a comprehensive study of current practice and use of eyewitness testimony, with an eye toward understanding why identification errors occur and what can be done to prevent them. The work of this committee led to key findings and recommendations for reform, detailed in a consensus report entitled In this review, I focus on the scientific issues that emerged from this study, along with brief discussions of how these issues led to specific recommendations for additional research, best practices for law enforcement, and use of eyewitness evidence by the courts.

View Article and Find Full Text PDF

Motivated by Signal Detection Theory (SDT), we developed a family of novel adaptive methods that estimate the sensitivity threshold-the signal intensity corresponding to a pre-defined sensitivity level (d' = 1)-in Yes-No (YN) and Forced-Choice (FC) detection tasks. Rather than focus stimulus sampling to estimate a single level of %Yes or %Correct, the current methods sample psychometric functions more broadly, to concurrently estimate sensitivity and decision factors, and thereby estimate thresholds that are independent of decision confounds. Developed for four tasks-(1) simple YN detection, (2) cued YN detection, which cues the observer's response state before each trial, (3) rated YN detection, which incorporates a Not Sure response, and (4) FC detection-the qYN and qFC methods yield sensitivity thresholds that are independent of the task's decision structure (YN or FC) and/or the observer's subjective response state.

View Article and Find Full Text PDF
Perceiving.

Daedalus

January 2015

Perceiving is the process by which evanescent sensations are linked to environmental cause and made enduring and coherent through the assignment of meaning, utility, and value. Fundamental to this process is the establishment of associations over space and time between sensory events and other sources of information. These associations provide the context needed to resolve the inherent ambiguity of sensations.

View Article and Find Full Text PDF

There is growing evidence that impaired sensory-processing significantly contributes to the cognitive deficits found in schizophrenia. For example, the mismatch negativity (MMN) and P3a event-related potentials (ERPs), neurophysiological indices of sensory and cognitive function, are reduced in schizophrenia patients and may be used as biomarkers of the disease. In agreement with glutamatergic theories of schizophrenia, NMDA antagonists, such as ketamine, elicit many symptoms of schizophrenia when administered to normal subjects, including reductions in the MMN and the P3a.

View Article and Find Full Text PDF

Population codes assume that neural systems represent sensory inputs through the firing rates of populations of differently tuned neurons. However, trial-by-trial variability and noise correlations are known to affect the information capacity of neural codes. Although recent studies have shown that stimulus presentation reduces both variability and rate correlations with respect to their spontaneous level, possibly improving the encoding accuracy, whether these second order statistics are tuned is unknown.

View Article and Find Full Text PDF

Optogenetics combines optics and genetics to control neuronal activity with cell-type specificity and millisecond temporal precision. Its use in model organisms such as rodents, Drosophila, and Caenorhabditis elegans is now well-established. However, application of this technology in nonhuman primates (NHPs) has been slow to develop.

View Article and Find Full Text PDF

Neurons in the middle temporal area (MT) are often viewed as motion detectors that prefer a single direction of motion in a single region of space. This assumption plays an important role in our understanding of visual processing, and models of motion processing in particular. We used extracellular recordings in area MT of awake, behaving monkeys (M.

View Article and Find Full Text PDF

Visual adaptation is expected to improve visual performance in the new environment. This expectation has been contradicted by evidence that adaptation sometimes decreases sensitivity for the adapting stimuli, and sometimes it changes sensitivity for stimuli very different from the adapting ones. We hypothesize that this pattern of results can be explained by a process that optimizes sensitivity for many stimuli, rather than changing sensitivity only for those stimuli whose statistics have changed.

View Article and Find Full Text PDF

Perception is influenced both by the immediate pattern of sensory inputs and by memories acquired through prior experiences with the world. Throughout much of its illustrious history, however, study of the cellular basis of perception has focused on neuronal structures and events that underlie the detection and discrimination of sensory stimuli. Relatively little attention has been paid to the means by which memories interact with incoming sensory signals.

View Article and Find Full Text PDF

Perceptual stability requires the integration of information across eye movements. We first tested the hypothesis that motion signals are integrated by neurons whose receptive fields (RFs) do not move with the eye but stay fixed in the world. Specifically, we measured the RF properties of neurons in the middle temporal area (MT) of macaques (Macaca mulatta) during the slow phase of optokinetic nystagmus.

View Article and Find Full Text PDF

The contrast sensitivity function (CSF) predicts functional vision better than acuity, but long testing times prevent its psychophysical assessment in clinical and practical applications. This study presents the quick CSF (qCSF) method, a Bayesian adaptive procedure that applies a strategy developed to estimate multiple parameters of the psychometric function (A. B.

View Article and Find Full Text PDF