The FGFR3::TACC3 fusion has been reported in subsets of diverse cancers including urothelial and squamous cell carcinomas (SCC). However, the morphology of FGFR3::TACC3-positive head and neck carcinomas has not been well studied and it is unclear if this fusion represents a random event, or if it might characterize a morphologically distinct tumor type. We describe nine FGFR3::TACC3 fusion-positive head and neck carcinomas affecting six males and three females aged 38 to 89 years (median, 59).
View Article and Find Full Text PDFControl of bleeding with direct-acting oral anticoagulants (DOACs) remains an unmet clinical need. Activated superFactor V (superFVa) is an engineered activated protein C (APC)-resistant FVa variant with enhanced procoagulant activity resulting from an A2/A3 domain disulfide bond and was studied here for control of DOAC-induced bleeding. SuperFVa reversed bleeding induced by FXa inhibitors (rivaroxaban, apixaban), and the FIIa inhibitor dabigatran in BalbC mice.
View Article and Find Full Text PDFPorocarcinoma (synonym: malignant eccrine poroma) is a rare aggressive carcinoma type with terminal sweat gland duct differentiation. The squamous variant of porocarcinoma is even less frequent and might be indistinguishable from conventional squamous cell carcinoma (SCC). We herein describe the first case of a carcinoma presenting as a primary parotid gland malignancy in a 24-year-old male without any other primary tumor.
View Article and Find Full Text PDFClin Appl Thromb Hemost
January 2020
Hemophilic arthropathy from joint bleeding remains a complication with major morbidity in the increasingly aging patients with hemophilia. Prophylactic clotting factor infusions, based on pharmacokinetic dosing to reduce bleeding rates, are being explored more and more. However, there is little evidence on the benefits of pharmacokinetic dosing in direct association with bleeding events.
View Article and Find Full Text PDFObjective: Hemophilic arthropathy is associated with pronounced vascular joint remodeling. Also, compared to the general population, PWH have a higher prevalence of hypertension not explained by usual risk factors. As vascular remodeling in various vascular beds is a hallmark of hypertension, we hypothesized that vascular joint remodeling is associated with elevated blood pressures and hypertension.
View Article and Find Full Text PDF. The etiology of the high prevalence of hypertension among patients with hemophilia (PWH) remains unknown. .
View Article and Find Full Text PDFBackground: In congenital Factor (F) VII deficiency bleeding phenotype and intrinsic FVII activity levels don't always correlate. Patients with FVII activity levels <30% appear to have a higher bleeding propensity, but bleeding can also occur at higher FVII activity levels. Reasons for bleeding at higher FVII activity levels are unknown, and it remains challenging to manage such patients clinically.
View Article and Find Full Text PDFHemophilic arthropathy is a debilitating condition that can develop as a consequence of frequent joint bleeding despite adequate clotting factor replacement. The mechanisms leading to repeated spontaneous bleeding are unknown. We investigated synovial, vascular, stromal, and cartilage changes in response to a single induced hemarthrosis in the FVIII-deficient mouse.
View Article and Find Full Text PDFObjective: An increased risk of bleeding is observed in patients receiving activated protein C (APC), which may be a limiting factor for the application of novel APC therapies. Since APC's therapeutic effects often require its cytoprotective activities on cells but not APC's anticoagulant activities, an agent that specifically antagonizes APC's anticoagulant effects but not its cytoprotective effects could provide an effective means to control concerns for risk of bleeding. We hypothesized that superFVa, an engineered activated FVa-variant that restores hemostasis in hemophilia could reduce APC-induced bleeding.
View Article and Find Full Text PDFAlmost two decades ago an anticoagulant function of factor V (FV) was discovered, as an anticoagulant cofactor for activated protein C (APC). A natural mutant of FV in which the R506 inactivation site was mutated to Gln (FV(Leiden)) was inactivated slower by APC, but also could not function as anticoagulant cofactor for APC in the inactivation of activated factor VIII (FVIIIa). This mutation is prevalent in populations of Caucasian descent, and increases the chance of thrombotic events in carriers.
View Article and Find Full Text PDFActivated protein C (APC) binds to its substrates activated factor V (FVa) and activated factor VIII (FVIIIa) with a basic exosite that consists of loops 37, 60, 70 and the autolysis loop. These loops have a high density of basic residues, resulting in a positive charge on the surface of APC. Many of these residues are important in the interaction of APC with FVa and FVIIIa.
View Article and Find Full Text PDFPathophysiol Haemost Thromb
January 2011
Coagulation factor V (FV) promotes inactivation of activated factor VIII (FVIIIa) by activated protein C (APC) and protein S. Loss of this APC cofactor activity is proposed to be partially responsible for the APC resistance phenotype of FV(Leiden). However, FVIIIa loses activity rapidly due to dissociation of the A2 domain, and this may be the primary mechanism of FVIIIa inactivation.
View Article and Find Full Text PDFFactor VIIIa is inactivated by a combination of two mechanisms. Activation of factor VIII by thrombin results in a heterotrimeric factor VIIIa that spontaneously inactivates due to dissociation of the A2 subunit. Additionally, factor VIIIa is cleaved by the anticoagulant serine protease, activated protein C, at two cleavage sites, Arg(336) in the A1 subunit and Arg(562) in the A2 subunit.
View Article and Find Full Text PDF