Publications by authors named "Thomas Cooper"

Skeletal muscle cells (myofibers) are elongated non-mitotic, multinucleated syncytia that have adapted a microtubule lattice. Microtubule-associated proteins (MAPs) play roles in regulating microtubule architecture. The most abundant MAP in skeletal muscle is MAP4.

View Article and Find Full Text PDF
Article Synopsis
  • - Myotonic dystrophy type 1 (DM1) is caused by a CTG triplet repeat expansion that leads to the production of RNA with excessive CUG repeats, which accumulate and form structures in cell nuclei; the mechanisms behind their expression and accumulation aren't fully understood.
  • - Researchers discovered that HSP90 plays a crucial role in modifying RNA foci levels in DM1 cells, with its inhibition leading to increased RNA foci and mRNA levels, supported by experiments where HSP90 was either knocked down or overexpressed.
  • - In differentiated DM1 cells, HSP90 inhibition caused a decrease in mRNA levels through a mechanism that doesn't involve p-STAT3, highlighting the complexity of HSP90's role
View Article and Find Full Text PDF

Myotonic Dystrophy Type 1 (DM1) is an autosomal dominant multisystemic disorder for which cardiac features, including conduction delays and arrhythmias, are the second leading cause of disease mortality. DM1 is caused by expanded CTG repeats in the 3' untranslated region of the DMPK gene. Transcription of the expanded DMPK allele produces mRNAs containing long tracts of CUG repeats, which sequester the Muscleblind-Like family of RNA binding proteins, leading to their loss-of-function and the dysregulation of alternative splicing.

View Article and Find Full Text PDF

Myotonic dystrophy type 1 (DM1) is an autosomal dominant disorder caused by an unstable expanded CTG repeat located in the 3'-UTR of the DM1 protein kinase (DMPK) gene. The pathogenic mechanism results in misregulated alternative splicing of hundreds of genes, creating the dilemma of establishing which genes contribute to the mechanism of DM1 skeletal muscle pathology. In this issue of the JCI, Cisco and colleagues systematically tested the combinatorial effects of DM1-relevant mis-splicing patterns in vivo and identified the synergistic effects of mis-spliced calcium and chloride channels as a major contributor to DM1 skeletal muscle impairment.

View Article and Find Full Text PDF

Background: Magnetic resonance imaging (MRI) is being increasingly considered as an alternative for the evaluation and reconstruction of orbital fractures. No previous research has compared the orbital volume of an MRI-imaged, three-dimensional (3D), reconstructed, and virtually restored bony orbit to the gold standard of computed tomography (CT).

Purpose: To measure the orbital volumes generated from MRI-based 3D models of fractured bony orbits with virtually positioned prebent fan plates in situ and compare them to the volumes of CT-based virtually reconstructed orbital models.

View Article and Find Full Text PDF
Article Synopsis
  • Postnatal skeletal muscle development involves significant changes in gene splicing, essential for adapting muscle function from fetal to adult stages.
  • The protein LIMCH1 is crucial in this process, with two spliced isoforms: uLIMCH1 (fetal) and mLIMCH1 (muscle-specific), which are produced differently during and after birth.
  • Knockout studies using CRISPR/Cas9 on mLIMCH1 in mice showed that the lack of this isoform leads to muscle weakness and impaired calcium handling, highlighting its importance in muscle function and the broader implications for conditions like muscular dystrophy.
View Article and Find Full Text PDF

The contractile cells of skeletal muscles, called myofibers, are elongated multinucleated syncytia formed and maintained by the fusion of proliferative myoblasts. Human myofibers can be hundreds of microns in diameter and millimeters in length. Myofibers are non-mitotic, obviating the need for microtubules in cell division.

View Article and Find Full Text PDF
Article Synopsis
  • Loss of gene function can sometimes be offset by similar genes, known as paralogs, that have overlapping roles, as seen with the Muscleblind-Like (MBNL) proteins in Myotonic Dystrophy Type 1 (DM1).
  • When MBNL1 is lost, MBNL2 levels rise in certain tissues, allowing MBNL2 to take over some functions of MBNL1.
  • The study reveals that the increase of MBNL2 is linked to specific changes in its gene splicing, affecting its location and stability, and suggests this compensatory process may play a significant role in DM1-related mechanisms.
View Article and Find Full Text PDF

We present near-ideal axisymmetric numerically optimized spline concentrators (OSCs) which outperform the compound parabolic concentrator (CPC). By perturbing the profile of the revolved CPC by a variable-offset spline defined in tangent-normal space, we show that ray rejection can be reduced to nearly half of that of the CPC, without increasing concentrator length. The resulting OSCs achieve acceptance efficiencies as high as 99.

View Article and Find Full Text PDF

Myotonic dystrophy (DM) is a highly variable, multisystemic disorder that clinically affects one in 8000 individuals. While research has predominantly focused on the symptoms and pathological mechanisms affecting striated muscle and brain, DM patient surveys have identified a high prevalence for gastrointestinal (GI) symptoms amongst affected individuals. Clinical studies have identified chronic and progressive dysfunction of the esophagus, stomach, liver and gallbladder, small and large intestine, and rectum and anal sphincters.

View Article and Find Full Text PDF

We report on the optoelectronic properties of a series of unsymmetrical π-conjugated phenyleneethynylene macromolecules bearing ferrocene (Fc) as the electron-donor group (D), (benzyl) benzoate (Bz) or benzoic acid (Ac) as the electron attractor group (A) and connected through 2,5-di(alcoxy) phenyleneethynylene(s) (PE) with = 1, 2, 3 as π-conjugated bridges. In the series, by increasing the distance between the electron-attracting and electron-donor groups, the push-pull effect decreases. The intramolecular charge transfer (D → π → A) was evaluated by static and dynamic spectroscopy, electrochemistry, and density functional theory (DFT) theoretical calculations.

View Article and Find Full Text PDF

The optical properties of coordination complexes with ligands containing nitrogen heterocycles have been extensively studied for decades. One subclass of these materials, metal complexes utilizing substituted pyrazines and quinoxalines as ligands, has been employed in a variety of photochemical applications ranging from photodynamic therapy to organic light-emitting diodes. A vast majority of this work focuses on characterization of the metal-to-ligand charge-transfer states in these metal complexes; however, literature reports rarely investigate the photophysics of the parent pyrazine or quinoxaline ligand or perform control experiments utilizing metal complexes that lack low-lying charge-transfer (CT) states in order to determine how metal-atom coordination influences the photophysical properties of the ligand.

View Article and Find Full Text PDF

Granular cell tumour (GCT) is a rare soft tissue lesion which many consider to have malignant potential of yet unknown aetiopathogenesis. Oral GCT lesions may occur in an area of leucoplakia and are predominantly present on the tongue. This case study highlights an uncommon presentation of this condition located on the buccal mucosa and illustrates the need for meticulous evaluation of suspicious lesions.

View Article and Find Full Text PDF

Four core and six distyryl-extended methylated-meso-phenyl-BODIPY dyes with varying iodine content were synthesized. The influence of iodine loading and substitution position on the photophysical properties of these chromophores was evaluated. Selective iodine insertion at the 2- and 6-positions of the methylated-meso-phenyl-BODIPY core, rather than maximum iodine content, resulted in the highest intersystem crossing efficiency.

View Article and Find Full Text PDF

Myotonic dystrophy type 1 (DM1) is caused by a CTG repeat expansion in the DMPK gene. Expression of pathogenic expanded CUG repeat (CUGexp) RNA causes multisystemic disease by perturbing the functions of RNA-binding proteins, resulting in expression of fetal protein isoforms in adult tissues. Cardiac involvement affects 50% of individuals with DM1 and causes 25% of disease-related deaths.

View Article and Find Full Text PDF

RNA has major regulatory roles in a wide range of biological processes and a surge of RNA research has led to the classification of numerous functional RNA species. One example is long noncoding RNAs (lncRNAs) that are structurally complex transcripts >200 nucleotides (nt) in length and lacking a canonical open reading frame (ORF). Despite a general lack of sequence conservation and low expression levels, many lncRNAs have been shown to have functionality in diverse biological processes as well as in mechanisms of disease.

View Article and Find Full Text PDF

The fabrication, molecular structure, and spectroscopy of a stable cholesteric liquid crystal platinum acetylide glass obtained from -Pt(PEt)(C≡C-CH-C≡N)(C≡C-CH-COO-Cholesterol), are described and designated as PE1-CN-Chol. Polarized optical microscopy, differential scanning calorimetry, and wide-angle X-ray scattering experiments show room temperature glassy/crystalline texture with crystal formation upon heating to 165 °C. Further heating results in conversion to cholesteric phase.

View Article and Find Full Text PDF

Enhancing stress resilience in at-risk populations could significantly reduce the incidence of stress-related psychiatric disorders. We have previously reported that the administration of (R,S)-ketamine prevents stress-induced depressive-like behavior in male mice, perhaps by altering α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated transmission in hippocampal CA3. However, it is still unknown whether metabolites of (R,S)-ketamine can be prophylactic in both sexes.

View Article and Find Full Text PDF

mRNA processing is highly regulated during development through changes in RNA-binding protein (RBP) activities. CUG-BP, Elav-like family member 1 (CELF1, also called CUGBP1) is an RBP, the expression of which decreases in skeletal muscle soon after birth. CELF1 regulates multiple nuclear and cytoplasmic RNA processing events.

View Article and Find Full Text PDF

Myotonic dystrophy type 1 (DM1) is a multisystemic genetic disorder caused by the CTG repeat expansion in the 3'-untranslated region of DMPK gene. Heart dysfunctions occur in ∼80% of DM1 patients and are the second leading cause of DM1-related deaths. Herein, we report that upregulation of a non-muscle splice isoform of RNA-binding protein RBFOX2 in DM1 heart tissue-due to altered splicing factor and microRNA activities-induces cardiac conduction defects in DM1 individuals.

View Article and Find Full Text PDF