Publications by authors named "Thomas Congdon"

Cell culture plays a critical role in biomedical discovery and drug development. Primary hepatocytes and hepatocyte-derived cell lines are especially important cellular models for drug discovery and development. To enable high-throughput screening and ensure consistent cell phenotypes, there is a need for practical and efficient cryopreservation methods for hepatocyte-derived cell lines and primary hepatocytes in an assay-ready format.

View Article and Find Full Text PDF

Ice binding proteins (IBP) have evolved to limit the growth of ice but also to promote ice formation by ice-nucleating proteins (INPs). IBPs, which modulate these seemingly distinct processes, often have high sequence similarities, and molecular size/assembly is hypothesized to be a crucial determinant. There are only a few synthetic materials that reproduce INP function, and rational design of ice nucleators has not been achieved due to outstanding questions about the mechanisms of ice binding.

View Article and Find Full Text PDF

Poly(vinyl alcohol), PVA, is the most potent polymeric ice recrystallisation inhibitor (IRI), mimicking a complex function of ice binding proteins. The IRI activity of PVA scales with its molecular weight and hence broad molecular weight distributions in free radical-derived PVAs lead to activity measurements dominated by small amounts of heavier fractions. Well-defined PVA can be prepared by thermally initiated RAFT/MADIX polymerization using xanthates by the polymerization of the less activated monomer vinyl acetate.

View Article and Find Full Text PDF

Cell monolayers underpin the discovery and screening of new drugs and allow for fundamental studies of cell biology and disease. However, current cryopreservation technologies do not allow cells to be stored frozen while attached to tissue culture plastic. Hence, cells must be thawed from suspension, cultured for several days or weeks, and finally transferred into multiwell plates for the desired application.

View Article and Find Full Text PDF

Lateral flow devices are rapid (and often low cost) point-of-care diagnostics-the classic example being the home pregnancy test. A test line (the stationary phase) is typically prepared by the physisorption of an antibody, which binds to analytes/antigens such as viruses, toxins, or hormones. However, there is no intrinsic requirement for the detection unit to be an antibody, and incorporating other ligand classes may bring new functionalities or detection capabilities.

View Article and Find Full Text PDF

From trauma wards to chemotherapy, red blood cells are essential in modern medicine. Current methods to bank red blood cells typically use glycerol (40 wt %) as a cryoprotective agent. Although highly effective, the deglycerolization process, post-thaw, is time-consuming and results in some loss of red blood cells during the washing procedures.

View Article and Find Full Text PDF

Ice binding proteins modulate ice nucleation/growth and have huge (bio)technological potential. There are few synthetic materials that reproduce their function, and rational design is challenging due to the outstanding questions about the mechanisms of ice binding, including whether ice binding is essential to reproduce all their macroscopic properties. Here we report that nanoparticles obtained by polymerization-induced self-assembly (PISA) inhibit ice recrystallization (IRI) despite their constituent polymers having no apparent activity.

View Article and Find Full Text PDF

Chemical tools to modulate ice formation/growth have great (bio)-technological value, with ice binding/antifreeze proteins being exciting targets for biomimetic materials. Here we introduce polymer nanomaterials that are potent inhibitors of ice recrystallisation using polymerisation-induced self-assembly (PISA), employing a poly(vinyl alcohol) graft macromolecular chain transfer agent (macro-CTA). Crucially, engineering the core-forming block with diacetone acrylamide enabled PISA to be conducted in saline, whereas poly(2-hydroxypropyl methacrylate) cores led to coagulation.

View Article and Find Full Text PDF

Understanding the ice recrystallisation inhibition (IRI) activity of antifreeze biomimetics is crucial to the development of the next generation of cryoprotectants. In this work, we bring together molecular dynamics simulations and quantitative experimental measurements to unravel the microscopic origins of the IRI activity of poly(vinyl)alcohol (PVA)-the most potent of biomimetic IRI agents. Contrary to the emerging consensus, we find that PVA does not require a "lattice matching" to ice in order to display IRI activity: instead, it is the effective volume of PVA and its contact area with the ice surface which dictates its IRI strength.

View Article and Find Full Text PDF
Article Synopsis
  • Protein storage and transport are crucial for delivering therapies and enzymes, often requiring freezing methods that use cryoprotectants like glycerol or trehalose.
  • The study examines how poly(vinyl alcohol) (PVA) acts as an ice recrystallisation inhibitor to protect proteins during freeze/thaw cycles and compares the efficacy of PVA in mixing versus polymer-protein conjugation.
  • Results show that PVA can effectively enhance protein activity post-thaw, allowing for storage at higher temperatures (-20 °C) compared to glycerol, offering a potential low-cost and scalable alternative for biotechnological and biomedical applications.
View Article and Find Full Text PDF

There is an urgent need to understand the behavior of the novel coronavirus (SARS-COV-2), which is the causative agent of COVID-19, and to develop point-of-care diagnostics. Here, a glyconanoparticle platform is used to discover that -acetyl neuraminic acid has affinity toward the SARS-COV-2 spike glycoprotein, demonstrating its glycan-binding function. Optimization of the particle size and coating enabled detection of the spike glycoprotein in lateral flow and showed selectivity over the SARS-COV-1 spike protein.

View Article and Find Full Text PDF

Carbon nanodots (CNDs) have attracted substantial scientific curiosity because of their intriguing stimuli-responsive optical properties. However, one obstacle to the more widespread use of CNDs as transducers for , biodetection systems is incomplete knowledge regarding the underlying chemical changes responsible for this responsiveness, and how these chemical features can be engineered the precursors chosen for CND synthesis. This study demonstrates that the precursor's functional groups play a key role in directing N/S/Se heteroatom dopants either towards the surface of the CNDs, towards the aromatic core, or towards small organic fluorophores in the core.

View Article and Find Full Text PDF

The huge chemical space potential of synthetic polymers means that in many studies only a small parameter range can be realistically synthesized in a short time and hence the "best" formulations may not be optimum. Throughput is traditionally limited by the need for deoxygenation in radical polymerizations, but advances in photopolymerization now provide opportunities for "in-air" polymerizations. Here, we have developed a protocol using liquid handling robots (or multichannel pipettes) with blue light photolysis of reversible addition fragmentation chain transfer agents and tertiary amine deoxygenation to enable the synthesis of polymer libraries in industry-standard 96-well plates with no specialized infrastructure and no degassing step.

View Article and Find Full Text PDF

Antifreeze (glyco) proteins (AF(G)Ps) are potent inhibitors of ice recrystallization and may have biotechnological applications. The most potent AF(G)Ps function at concentrations a thousand times lower than synthetic mimics such as poly(vinyl alcohol), PVA. Here, we demonstrate that PVA's ice recrystallization activity can be rescued at concentrations where it does not normally function, by the addition of noninteracting polymeric depletants, due to PVA forming colloids in the concentrated saline environment present between ice crystals.

View Article and Find Full Text PDF

This study demonstrates that pH-responsive polymers have a very high buffering capacity in their immediate vicinity, a phenomenon termed "nanobuffering". This can be exploited to dissociate local nanoscale pH from bulk solution pH. Herein, a series of pH-responsive polymers were conjugated to Protein-A to rationally manipulate the latter's binding affinity toward antibodies via nanobuffering ( i.

View Article and Find Full Text PDF

Antifreeze (glyco)proteins (AF(G)Ps) have potent ice recrystallisation inhibition (IRI) activity - a desirable phenomenon in applications such as cryopreservation, frozen food and more. In Nature AF(G)P activity is regulated by protein expression levels in response to an environmental stimulus; temperature. However, this level of regulation is not possible in synthetic systems.

View Article and Find Full Text PDF

Antifreeze (glyco) proteins are produced by many cold-acclimatized species to enable them to survive subzero temperatures. These proteins have multiple macroscopic effects on ice crystal growth which makes them appealing for low-temperature applications-from cellular cryopreservation to food storage. Poly(vinyl alcohol) has remarkable ice recrystallization inhibition activity, but its mode of action is uncertain as is the extent at which it can be incorporated into other high-order structures.

View Article and Find Full Text PDF

Antifreeze (glyco)proteins are found in polar fish species and act to slow the rate of growth of ice crystals; a property known as ice recrystallization inhibition. The ability to slow ice growth is of huge technological importance especially in the cryopreservation of donor cells and tissue, but native antifreeze proteins are often not suitable, nor easily available. Therefore, the search for new materials that mimic this function is important, but currently limited by the low-throughout assays associated with the antifreeze properties.

View Article and Find Full Text PDF

Nature has evolved many elegant solutions to enable life to flourish at low temperatures by either allowing (tolerance) or preventing (avoidance) ice formation. These processes are typically controlled by ice nucleating proteins or antifreeze proteins, which act to either promote nucleation, prevent nucleation or inhibit ice growth depending on the specific need, respectively. These proteins can be expensive and their mechanisms of action are not understood, limiting their translation, especially into biomedical cryopreservation applications.

View Article and Find Full Text PDF

The ability of polyols to act as ice recrystallisation inhibitors (IRI), inspired by antifreeze (glyco)proteins are studied. Poly(vinyl alcohol), PVA, a known IRI active polymer was compared to a panel of mono and polysaccharides, with the aim of elucidating why some polyols are active and others show no activity. When corrected for total hydroxyl concentration all the carbohydrate-based polyols displayed near identical activity with no significant influence of molecular weight.

View Article and Find Full Text PDF

This manuscript reports a detailed study on the ability of poly(vinyl alcohol) to act as a biomimetic surrogate for antifreeze(glyco)proteins, with a focus on the specific property of ice-recrystallization inhibition (IRI). Despite over 40 years of study, the underlying mechanisms that govern the action of biological antifreezes are still poorly understood, which is in part due to their limited availability and challenging synthesis. Poly(vinyl alcohol) (PVA) has been shown to display remarkable ice recrystallization inhibition activity despite its major structural differences to native antifreeze proteins.

View Article and Find Full Text PDF