Publications by authors named "Thomas Claverie"

Article Synopsis
  • The study highlights that there is a lack of data on marine fish species' extinction risks, which hampers effective conservation planning, particularly for teleost fishes.
  • By using machine learning algorithms, researchers predicted an increased IUCN extinction risk for marine fishes from 2.5% to 12.7%, identifying specific traits like small geographic range and low growth rate as indicators of threat.
  • The research proposes integrating these predictions into conservation strategies, emphasizing the importance of prioritizing marine protected areas, especially in less diverse regions that are still crucial for vulnerable species.
View Article and Find Full Text PDF

As population-related climate change research increases, so does the need to nuance approaches to this complex phenomenon, including issues related to cultural and linguistic translations. To explore how climate change is understood in understudied societies, a case-study approach is taken to address social representations of climate change by inhabitants of a Maore village in the French island of Mayotte. The study explores how local fishers understand the issue when considering observed environmental changes.

View Article and Find Full Text PDF

A global survey of coral reefs reveals that overfishing is driving resident shark species toward extinction, causing diversity deficits in reef elasmobranch (shark and ray) assemblages. Our species-level analysis revealed global declines of 60 to 73% for five common resident reef shark species and that individual shark species were not detected at 34 to 47% of surveyed reefs. As reefs become more shark-depleted, rays begin to dominate assemblages.

View Article and Find Full Text PDF

Generating genomic data for 19 tropical reef fish species of the Western Indian Ocean, we investigate how species ecology influences genetic diversity patterns from local to regional scales. We distinguish between the , and components of genetic diversity, which we subsequently link to six ecological traits. We find that the and components of genetic diversity are strongly correlated so that species with a high total regional genetic diversity display systematically high local diversity.

View Article and Find Full Text PDF

Decades of overexploitation have devastated shark populations, leaving considerable doubt as to their ecological status. Yet much of what is known about sharks has been inferred from catch records in industrial fisheries, whereas far less information is available about sharks that live in coastal habitats. Here we address this knowledge gap using data from more than 15,000 standardized baited remote underwater video stations that were deployed on 371 reefs in 58 nations to estimate the conservation status of reef sharks globally.

View Article and Find Full Text PDF

Processing data from surveys using photos or videos remains a major bottleneck in ecology. Deep Learning Algorithms (DLAs) have been increasingly used to automatically identify organisms on images. However, despite recent advances, it remains difficult to control the error rate of such methods.

View Article and Find Full Text PDF

Coral reefs host hundreds of thousands of animal species that are increasingly threatened by anthropogenic disturbances. These animals host microbial communities at their surface, playing crucial roles for their fitness. However, the diversity of such microbiomes is mostly described in a few coral species and still poorly defined in other invertebrates and vertebrates.

View Article and Find Full Text PDF

Cultural and recreational values of biodiversity are considered as important dimensions of nature's contribution to people. Among these values, the aesthetics can be of major importance as the appreciation of beauty is one of the simplest forms of human emotional response. Using an online survey, we disentangled the effects of different facets of biodiversity on aesthetic preferences of coral reef fish assemblages that are among the most emblematic assemblages on Earth.

View Article and Find Full Text PDF

Background: The surface of marine animals is covered by abundant and diversified microbial communities, which have major roles for the health of their host. While such microbiomes have been deeply examined in marine invertebrates such as corals and sponges, the microbiomes living on marine vertebrates have received less attention. Specifically, the diversity of these microbiomes, their variability among species, and their drivers are still mostly unknown, especially among the fish species living on coral reefs that contribute to key ecosystem services while they are increasingly affected by human activities.

View Article and Find Full Text PDF

The biodiversity crisis has spurred scientists to assess all facets of biodiversity so that stakeholders can establish protection programs. However, species that are perceived as beautiful receive more attention than less attractive species. This dynamic could have tremendous consequences on people's willingness to preserve biodiversity.

View Article and Find Full Text PDF

Tropical reef fishes are widely regarded as being perhaps the most morphologically diverse vertebrate assemblage on earth, yet much remains to be discovered about the scope and patterns of this diversity. We created a morphospace of 2,939 species spanning 56 families of tropical Indo-Pacific reef fishes and established the primary axes of body shape variation, the phylogenetic consistency of these patterns, and whether dominant patterns of shape change can be accomplished by diverse underlying changes. Principal component analysis showed a major axis of shape variation that contrasts deep-bodied species with slender, elongate forms.

View Article and Find Full Text PDF

Mechanical redundancy within a biomechanical system (e.g., many-to-one mapping) allows morphologically divergent organisms to maintain equivalent mechanical outputs.

View Article and Find Full Text PDF

The dynamic interplay among structure, function, and phylogeny form a classic triad of influences on the patterns and processes of biological diversification. Although these dynamics are widely recognized as important, quantitative analyses of their interactions have infrequently been applied to biomechanical systems. Here we analyze these factors using a fundamental biomechanical mechanism: power amplification.

View Article and Find Full Text PDF

The geometry of an animal's skeleton governs the transmission of force to its appendages. Joints and rigid elements that create a relatively large output displacement per unit input displacement have been considered to be geared for speed, but the relationship between skeletal geometry and speed is largely untested. The present study explored this subject with experiments and mathematical modeling to evaluate how morphological differences in the raptorial appendage of a mantis shrimp (Gonodactylus smithii) affect the speed of its predatory strike.

View Article and Find Full Text PDF

Extremely fast animal actions are accomplished with mechanisms that reduce the duration of movement. This process is known as power amplification. Although many studies have examined the morphology and performance of power-amplified systems, little is known about their development and evolution.

View Article and Find Full Text PDF

The squat lobster Munida rugosa has an unusual chela dimorphism exhibited mainly by large males. Some individuals have 'arched' chelae in which there is a gap between the dactylus and the pollex when closed, and others have a 'straight' morphology in which the dactylus and pollex oppose along most of their length. Geometric morphometric analysis indicated that, compared with males, the arched morphology does not develop fully in females, so further investigation was confined to males.

View Article and Find Full Text PDF