Janus nanocylinders exhibit nanometric dimensions, a high aspect ratio, and two faces with different chemistries (Janus character), making them potentially relevant for applications in optics, magnetism, catalysis, surface nanopatterning, or interface stabilization, but they are also very difficult to prepare by conventional strategies. In the present work, Janus nanocylinders were prepared by supramolecular coassembly in water of two different polymers functionalized with complementary assembling units. The originality of our approach consists in combining charge transfer complexation between electron-rich and electron-poor units with hydrogen bonding to (1) drive the supramolecular formation of one-dimensional structures (cylinders), (2) force the two polymer arms on opposite sides of the cylinders independently of their compatibility, resulting in Janus nanoparticles, and (3) detect coassembly through a color change of the solution upon mixing of the functional polymers.
View Article and Find Full Text PDFNaphthalene-diimide (NDI)-containing nanocylinders were formed by supramolecular self-assembly in water through cooperative hydrogen bonds between bis(urea) units, reinforced by hydrophobic and aromatic-stacking interactions. The nanocylinders, decorated with poly(ethylene oxide) arms ensuring their solubility in water, exhibit a huge aspect ratio (diameter 13 nm, length 300 nm) and are extremely stable.
View Article and Find Full Text PDF