Part quality monitoring and control in wire-based directed energy deposition additive manufacturing (w-DEDAM) processes has been garnering continuous interest from both the academic and industrial sectors. However, maintaining a consistent layer height and ensuring that the wall height aligns closely with the design, as depicted in computer-aided design (CAD) models, pose significant challenges. These challenges arise due to the uncertainties associated with the manufacturing process and the working environment, particularly with extended processing times.
View Article and Find Full Text PDFA dual beam optical coherence tomography (OCT) instrument has been developed for flow measurement that offers advantages over microscope derived imaging techniques. It requires only a single optical access port, allows simultaneous imaging of the microfluidic channel, does not require fluorescent seed particles, and can provide a millimetre-deep depth-section velocity profile (as opposed to horizontal-section). The dual beam instrument performs rapid re-sampling of particle positions, allowing measurement of faster flows.
View Article and Find Full Text PDFA novel dual beam Optical Coherence Tomography (OCT) instrument has been developed for high velocity flow measurement, principally in microfluidics applications. The scanned dual beam approach creates a pair of image-frames separated by a small spatiotemporal offset. Metre-per-second flow measurement is achieved by rapid re-imaging by the second beam allowing for particle tracking between each image-frame of the pair.
View Article and Find Full Text PDFThis paper investigates the application of feature tracking algorithms as an alternative data processing method for laser speckle instrumentation. The approach is capable of determining both the speckle pattern translation and rotation and can therefore be used to detect the in-plane rotation and translation of an object simultaneously. A performance assessment of widely used feature detection and matching algorithms from the computer vision field, for both translation and rotation measurements from laser speckle patterns, is presented.
View Article and Find Full Text PDFA novel signal processing technique using sinusoidal optical frequency modulation of an inexpensive continuous-wave laser diode source is proposed that allows highly linear interferometric phase measurements in a simple, self-referencing setup. Here, the use of a smooth window function is key to suppress unwanted signal components in the demodulation process. Signals from several interferometers with unequal optical path differences can be multiplexed, and, in contrast to prior work, the optical path differences are continuously variable, greatly increasing the practicality of the scheme.
View Article and Find Full Text PDFThis paper describes an extended and improved theory of the displacement of the objective speckle pattern resulting from displacement and/or deformation of a coherently illuminated diffuse object. Using the theory developed by Yamaguchi [Opt. Acta 28, 1359 (1981)], extended expressions are derived that include the influence of surface shape/gradients via the first order approximation of the shape as linear surface gradients.
View Article and Find Full Text PDFA new method of acquiring simultaneously the signal and reference channels used for interferometric planar Doppler velocimetry is proposed and demonstrated. The technique uses frequency division multiplexing (FDM) to facilitate the capture of the requisite images on a single camera, and is suitable for time-averaged flow measurements. Furthermore, the approach has the potential to be expanded to allow the multiplexing of additional measurement channels for multicomponent velocity measurement.
View Article and Find Full Text PDFA new method of multiplexing the speckle patterns needed in multicomponent digital shearography systems is presented. Frequency-division multiplexing (FDM) of the measurement channels is achieved by recording speckle patterns from objects illuminated by intensity-modulated sources. Each source is modulated at a discrete frequency, which is less than half of the camera frame rate, and a bank of images of the modulated speckle patterns is captured.
View Article and Find Full Text PDF