Publications by authors named "Thomas C Sudhof"

Article Synopsis
  • Researchers developed a new genetically encoded voltage indicator (GEVI) called ASAP5, which offers improved detection of excitatory postsynaptic potentials (EPSPs) and action potentials (APs) with better signal quality compared to previous indicators.
  • ASAP5 was able to detect both spiking and subthreshold neuronal activities in real-time, showing its effectiveness in both animal models and cultured human neurons, even capturing small EPSPs of about 1-mV.
  • The study revealed that EPSP amplitudes decrease as they move away from the source, with further implications for using voltage imaging in studying neuronal dysfunction related to diseases, including those affecting human neurons.
View Article and Find Full Text PDF

Cytoplasmic dynein is essential for intracellular transport. Despite extensive in vitro characterizations, how the dynein motors transport vesicles by processive steps in live cells remains unclear. To dissect the molecular mechanisms of dynein, we develop optical probes that enable long-term single-particle tracking in live cells with high spatiotemporal resolution.

View Article and Find Full Text PDF

Neuroligin-3 (Nlgn3) is an autism-associated cell-adhesion molecule that interacts with neurexins and is robustly expressed in both neurons and astrocytes. Neuronal Nlgn3 is an essential regulator of synaptic transmission but the function of astrocytic Nlgn3 is largely unknown. Given the high penetrance of Nlgn3 mutations in autism and the emerging role of astrocytes in neuropsychiatric disorders, we here asked whether astrocytic Nlgn3 might shape neural circuit properties in the cerebellum similar to neuronal Nlgn3.

View Article and Find Full Text PDF

Social communication guides decision-making, which is essential for survival. Social transmission of food preference (STFP) is an ecologically relevant memory paradigm in which an animal learns a desirable food odour from another animal in a social context, creating a long-term memory. How food-preference memory is acquired, consolidated and stored is unclear.

View Article and Find Full Text PDF

Synaptic adhesion molecules (SAMs) are evolutionarily conserved proteins that play an important role in the form and function of neuronal synapses. Teneurins (Tenms) and latrophilins (Lphns) are well-known cell adhesion molecules that form a transsynaptic complex. Recent studies suggest that Tenm3 and Lphn2 (gene symbol Adgrl2) are involved in hippocampal circuit assembly via their topographical expression.

View Article and Find Full Text PDF

Latrophilin-1 (Lphn1, aka CIRL1 and CL1; gene symbol ) is an adhesion GPCR that has been implicated in excitatory synaptic transmission as a candidate receptor for α-latrotoxin. Here we analyzed conditional knock-in/knock-out mice for Lphn1 that contain an extracellular myc epitope tag. Mice of both sexes were used in all experiments.

View Article and Find Full Text PDF

Memory encodes past experiences, thereby enabling future plans. The basolateral amygdala is a centre of salience networks that underlie emotional experiences and thus has a key role in long-term fear memory formation. Here we used spatial and single-cell transcriptomics to illuminate the cellular and molecular architecture of the role of the basolateral amygdala in long-term memory.

View Article and Find Full Text PDF

The assembly and specification of synapses in the brain is incompletely understood. Latrophilin-3 (encoded by Adgrl3, also known as Lphn3)-a postsynaptic adhesion G-protein-coupled receptor-mediates synapse formation in the hippocampus but the mechanisms involved remain unclear. Here we show in mice that LPHN3 organizes synapses through a convergent dual-pathway mechanism: activation of Gα signalling and recruitment of phase-separated postsynaptic protein scaffolds.

View Article and Find Full Text PDF

Rapid delivery of glutamate receptors to the postsynaptic membrane via vesicle fusion is a central component of synaptic plasticity. However, it is unknown how this process supports specific neural computations during behavior. To bridge this gap, we combined conditional genetic deletion of a component of the postsynaptic membrane fusion machinery, Syntaxin3 (Stx3), in hippocampal CA1 neurons of mice with population calcium imaging.

View Article and Find Full Text PDF

α-synuclein (α-Syn) is a presynaptic protein that is involved in Parkinson's and other neurodegenerative diseases and binds to negatively charged phospholipids. Previously, we reported that α-Syn clusters synthetic proteoliposomes that mimic synaptic vesicles. This vesicle-clustering activity depends on a specific interaction of α-Syn with anionic phospholipids.

View Article and Find Full Text PDF

Latrophilins are adhesion G-protein coupled receptors (aGPCRs) that control excitatory synapse formation. Most aGPCRs, including latrophilins, are autoproteolytically cleaved at their GPCR-autoproteolysis inducing (GAIN) domain, but the two resulting fragments remain noncovalently associated on the cell surface. Force-mediated dissociation of the fragments is thought to activate G-protein signaling, but how this mechanosensitivity arises is poorly understood.

View Article and Find Full Text PDF

The production of induced neuronal (iN) cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells by the forced expression of proneural transcription factors is rapid, efficient and reproducible. The ability to generate large numbers of human neurons in such a robust manner enables large-scale studies of human neural differentiation and neuropsychiatric diseases. Surprisingly, similar transcription factor-based approaches for converting mouse ESCs into iN cells have been challenging, primarily because of low cell survival.

View Article and Find Full Text PDF

Synaptic adhesion molecules (SAMs) shape the structural and functional properties of synapses and thereby control the information processing power of neural circuits. SAMs are broadly expressed in the brain, suggesting that they may instruct synapse formation and specification via a combinatorial logic. Here, we generate sextuple conditional knockout mice targeting all members of the two major families of presynaptic SAMs, Neurexins and leukocyte common antigen-related-type receptor phospho-tyrosine phosphatases (LAR-PTPRs), which together account for the majority of known trans-synaptic complexes.

View Article and Find Full Text PDF

Presenilin mutations that alter γ-secretase activity cause familial Alzheimer's disease (AD), whereas ApoE4, an apolipoprotein for cholesterol transport, predisposes to sporadic AD. Both sporadic and familial AD feature synaptic dysfunction. Whether γ-secretase is involved in cholesterol metabolism and whether such involvement impacts synaptic function remains unknown.

View Article and Find Full Text PDF

Endocannabinoids are among the most powerful modulators of synaptic transmission throughout the nervous system, and yet little is understood about the release of endocannabinoids from postsynaptic compartments. Here we report an unexpected finding that endocannabinoid release requires synucleins, key contributors to Parkinson's disease. We show that endocannabinoids are released postsynaptically by a synuclein-dependent and SNARE-dependent mechanism.

View Article and Find Full Text PDF

Cerebellins (Cbln1-4) are secreted adaptor proteins that connect presynaptic neurexins (Nrxn1-3) to postsynaptic ligands (GluD1/2 for Cbln1-3 vs. DCC and Neogenin-1 for Cbln4). Classical studies demonstrated that neurexin-Cbln1-GluD2 complexes organize cerebellar parallel-fiber synapses, but the role of cerebellins outside of the cerebellum has only recently been clarified.

View Article and Find Full Text PDF

Astrocytes exert multifarious roles in the formation, regulation, and function of synapses in the brain, but the mechanisms involved remain unclear. Interestingly, astrocytes abundantly express neuroligins, postsynaptic adhesion molecules that bind to presynaptic neurexins. A pioneering recent study reported that loss-of-function of neuroligins in astrocytes impairs excitatory synapse formation and astrocyte morphogenesis.

View Article and Find Full Text PDF