Silicone-polyether (SPE) surfactants, made of a polydimethyl-siloxane (PDMS) backbone and polyether branches, are commonly used as additives in the production of polymeric foams with improved properties. A key step in the production of polymeric foams is the nucleation of gas bubbles in the polymer matrix upon supersaturation of dissolved gas. However, the role of SPE surfactants in the nucleation of gas bubbles is not well understood.
View Article and Find Full Text PDFIn carbon dioxide-blown polymer foams, the solubility of carbon dioxide (CO) in the polymer profoundly shapes the structure and, consequently, the physical properties of the foam. One such foam is polyurethane-commonly used for thermal insulation, acoustic insulation, and cushioning-which increasingly relies on CO to replace environmentally harmful blowing agents. Polyurethane is produced through the reaction of isocyanate and polyol, of which the polyol has the higher capacity for dissolving CO.
View Article and Find Full Text PDFPolyvinyl polymers bearing pendant hole transport functionalities have been extensively explored for solution-processed hole transport layer (HTL) technologies, yet there are only rare examples of high anisotropic packing of the HT moieties of these polymers into substrate-parallel orientations within HTL films. For small molecules, substrate-parallel alignment of HT moieties is a well-established approach to improve overall device performance. To address the longstanding challenge of extension from vapor-deposited small molecules to solution-processable polymer systems, a fundamental chemistry tactic is reported here, involving the positioning of HT side chains within macromolecular frameworks by the construction of HT polymers having bottlebrush topologies.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2021
In the next decade, separation science will be an important research topic in addressing complex challenges like reducing carbon footprint, lowering energy cost, and making industrial processes simpler. In industrial chemical processes, particularly in petrochemical operations, separation and product refining steps are responsible for up to 30% of energy use and 30% of the capital cost. Membranes and adsorption technologies are being actively studied as alternative and partial replacement opportunities for the state-of-the-art cryogenic distillation systems.
View Article and Find Full Text PDFThe ability to manipulate a single quantum object, such as a single electron or a single spin, to induce a change in a macroscopic observable lies at the heart of nanodevices of the future. We report an experiment wherein a single superconducting flux quantum, or a fluxon, can be exploited to switch the resistance of a nanowire between two discrete values. The experimental geometry consists of centimeter-long nanowires of superconducting Ga-In eutectic, with spontaneously formed Ga nanodroplets along the length of the nanowire.
View Article and Find Full Text PDFLow-dimensional carbon nanomaterials such as fullerenes, nanotubes, graphene and diamondoids have extraordinary physical and chemical properties. Compression-induced polymerization of aromatic molecules could provide a viable synthetic route to ordered carbon nanomaterials, but despite almost a century of study this approach has produced only amorphous products. Here we report recovery to ambient pressure of macroscopic quantities of a crystalline one- dimensional sp(3) carbon nanomaterial formed by high-pressure solid-state reaction of benzene.
View Article and Find Full Text PDFIn situ high-pressure Raman spectroscopy, with corroborating density functional calculations, is used to probe C-H chemical bonds formed when dissociated hydrogen diffuses from a platinum nanocatalyst to three distinct graphenic surfaces. At ambient temperature, hydrogenation and dehydrogenation are reversible in the combined presence of an active catalyst and oxygen heteroatoms. Hydrogenation apparently occurs through surface diffusion in a chemisorbed state, while dehydrogenation requires diffusion of the chemisorbed species back to an active catalyst.
View Article and Find Full Text PDF