Aberrant activation of Wnt signaling results in unregulated accumulation of cytosolic β-catenin, which subsequently enters the nucleus and promotes transcription of genes that contribute to cellular proliferation and malignancy. Here, we sought to eliminate pathogenic β-catenin from the cytosol using designer ubiquibodies (uAbs), chimeric proteins composed of an E3 ubiquitin ligase and a target-binding domain that redirect intracellular proteins to the proteasome for degradation. To accelerate uAb development, we leveraged a protein language model (pLM)-driven algorithm called SaLT&PepPr to computationally design "guide" peptides with affinity for β-catenin, which were subsequently fused to the catalytic domain of a human E3 called C-terminus of Hsp70-interacting protein (CHIP).
View Article and Find Full Text PDFHuman immunoglobulin G (IgG) antibodies are one of the most important classes of biotherapeutic agents and undergo glycosylation at the conserved N297 site in the C2 domain, which is critical for IgG Fc effector functions and anti-inflammatory activity. Hence, technologies for producing authentically glycosylated IgGs are in high demand. While attempts to engineer for this purpose have been described, they have met limited success due in part to the lack of available oligosaccharyltransferase (OST) enzymes that can install linked glycans within the QYNST sequon of the IgG C2 domain.
View Article and Find Full Text PDFTargeted degradation using cell-specific lysosome targeting receptors is emerging as a new therapeutic strategy for the elimination of disease-associated proteins. The liver-specific human asialoglycoprotein receptor (ASGPR) is a particularly attractive lysosome targeting receptor leveraged for targeted protein degradation (TPD). However, the efficiency of different glycan ligands for ASGPR-mediated lysosomal delivery remains to be further characterized.
View Article and Find Full Text PDFMultivalent interactions are a key characteristic of protein-carbohydrate recognition. Phospholipid-based liposomes have been explored as a popular platform for multivalent presentation of glycans, but this platform has been plagued by the instability of typical liposomal formulations in biological media. We report here the exploitation of catanionic vesicles as a stable lipid-based nanoparticle scaffold for displaying large natural N-glycans as multivalent ligands.
View Article and Find Full Text PDFN-Glycosylation plays an important role in many biological recognition processes. However, very few N-glycan-specific antibodies are available for functional studies and potentially for therapeutic development. In this study, we sought to synthesize bacteriophage Qβ conjugates with representative N-glycans and investigate their immunogenicity for raising N-glycan-specific antibodies.
View Article and Find Full Text PDFLysosome-targeting chimeras (LYTACs) offer an opportunity for the degradation of extracellular and membrane-associated proteins of interest. Here, we report an efficient chemoenzymatic method that enables a single-step and site-specific conjugation of high-affinity mannose-6-phosphate (M6P) glycan ligands to antibodies without the need of protein engineering and conventional click reactions that would introduce "unnatural" moieties, yielding homogeneous antibody-M6P glycan conjugates for targeted degradation of membrane-associated proteins. Using trastuzumab and cetuximab as model antibodies, we showed that the wild-type endoglycosidase S (Endo-S) could efficiently perform the antibody deglycosylation and simultaneous transfer of an M6P-glycan from a synthetic M6P-glycan oxazoline to the deglycosylated antibody in a one-pot manner, giving structurally well-defined antibody-M6P glycan conjugates.
View Article and Find Full Text PDFBacteria produce a remarkably diverse range of glycoside hydrolases to metabolize glycans from the environment as a primary source of nutrients, and to promote the colonization and infection of a host. Here we focus on EndoE, a multi-modular glycoside hydrolase secreted by Enterococcus faecalis, one of the leading causes of healthcare-associated infections. We provide X-ray crystal structures of EndoE, which show an architecture composed of four domains, including GH18 and GH20 glycoside hydrolases connected by two consecutive three α-helical bundles.
View Article and Find Full Text PDFN-glycosylation is one of the most abundant posttranslational modifications of proteins, essential for many physiological processes, including protein folding, protein stability, oligomerization and aggregation, and molecular recognition events. Defects in the N-glycosylation pathway cause diseases that are classified as congenital disorders of glycosylation. The ability to manipulate protein N-glycosylation is critical not only to our fundamental understanding of biology but also for the development of new drugs for a wide range of human diseases.
View Article and Find Full Text PDFJ Manipulative Physiol Ther
May 2006
Objective: To present a case of symptomatic, expansile L1 vertebral hemangioma.
Clinical Features: A 46-year-old man presented with progressive neurologic changes and insidious onset of low back pain.
Intervention And Outcome: After a trial of 3 visits of conservative chiropractic care, no improvement was noted.