The paired-like homeobox transcription factor LEUTX is expressed in human preimplantation embryos between the 4- and 8-cell stages, and then silenced in somatic tissues. To characterize the function of LEUTX, we performed a multiomic characterization of LEUTX using two proteomics methods and three genome-wide sequencing approaches. Our results show that LEUTX stably interacts with the EP300 and CBP histone acetyltransferases through its 9 amino acid transactivation domain (9aaTAD), as mutation of this domain abolishes the interactions.
View Article and Find Full Text PDFThe various stages of epithelial-mesenchymal transition (EMT) generate phenotypically heterogeneous populations of cells. Here, we detail a dual recombinase lineage tracing system using a transgenic mouse model of metastatic breast cancer to trace and characterize breast cancer cells at different EMT stages. We describe analytical steps to label cancer cells at an early partial or a late full EMT state, followed by tracking their behavior in tumor slice cultures.
View Article and Find Full Text PDFDouble homeobox 4 () is expressed at the early pre-implantation stage in human embryos. Here we show that induced human expression substantially alters the chromatin accessibility of non-coding DNA and activates thousands of newly identified transcribed enhancer-like regions, preferentially located within ERVL-MaLR repeat elements. CRISPR activation of transcribed enhancers by C-terminal DUX4 motifs results in the increased expression of target embryonic genome activation (EGA) genes and .
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) is a transient, reversible process of cell de-differentiation where cancer cells transit between various stages of an EMT continuum, including epithelial, partial EMT, and mesenchymal cell states. We have employed Tamoxifen-inducible dual recombinase lineage tracing systems combined with live imaging and 5-cell RNA sequencing to track cancer cells undergoing partial or full EMT in the MMTV-PyMT mouse model of metastatic breast cancer. In primary tumors, cancer cells infrequently undergo EMT and mostly transition between epithelial and partial EMT states but rarely reach full EMT.
View Article and Find Full Text PDFThe vast majority of breast cancer-associated deaths are due to metastatic spread of cancer cells, a process aided by epithelial-to-mesenchymal transition (EMT). Mounting evidence has indicated that long non-coding RNAs (lncRNAs) also contribute to tumor progression. We report the identification of 114 novel lncRNAs that change their expression during TGFβ-induced EMT in murine breast cancer cells (referred to as EMT-associated transcripts; ETs).
View Article and Find Full Text PDFRecently, human PAIRED-LIKE homeobox transcription factor (TF) genes were discovered whose expression is limited to the period of embryo genome activation up to the 8-cell stage. One of these TFs is LEUTX, but its importance for human embryogenesis is still subject to debate. We confirmed that human LEUTX acts as a TAATCC-targeting transcriptional activator, like other K50-type PAIRED-LIKE TFs.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
December 2016
The comparative genomics between different rhodopsin-like family groups (α, β, γ and δ) is not well studied. We used a combination of phylogenetic analysis and statistical genomic methods to compare rhodopsin-like family proteins in species likely symbolic of this family's evolutionary progression. For intra-cluster relationships, we applied mathematical optimisation to enhance the tree search produced by the neighbour joining method (NJ) and compared it with maximum likelihood (ML) method.
View Article and Find Full Text PDFLeucine twenty homeobox (LEUTX) is a paired (PRD)-like homeobox gene that is expressed almost exclusively in human embryos during preimplantation development. We previously identified a novel transcription start site for the predicted human LEUTX gene based on the transcriptional analysis of human preimplantation embryos. The novel variant encodes a protein with a complete homeodomain.
View Article and Find Full Text PDFPAIRED (PRD)-like homeobox genes belong to a class of predicted transcription factor genes. Several of these PRD-like homeobox genes have been predicted in silico from genomic sequence but until recently had no evidence of transcript expression. We found recently that nine PRD-like homeobox genes, ARGFX, CPHX1, CPHX2, DPRX, DUXA, DUXB, NOBOX, TPRX1 and TPRX2, were expressed in human preimplantation embryos.
View Article and Find Full Text PDFHere, we provide an update of our review on homeobox genes that we wrote together with Walter Gehring in 1994. Since then, comprehensive surveys of homeobox genes have become possible due to genome sequencing projects. Using the 103 Drosophila homeobox genes as example, we present an updated classification.
View Article and Find Full Text PDFTranscriptional program that drives human preimplantation development is largely unknown. Here, by using single-cell RNA sequencing of 348 oocytes, zygotes and single blastomeres from 2- to 3-day-old embryos, we provide a detailed analysis of the human preimplantation transcriptome. By quantifying transcript far 5'-ends (TFEs), we include in our analysis transcripts that derive from alternative promoters.
View Article and Find Full Text PDFHomeobox genes play crucial roles for the development of multicellular eukaryotes. We have generated a revised list of all homeobox genes for Caenorhabditis elegans and provide a nomenclature for the previously unnamed ones. We show that, out of 103 homeobox genes, 70 are co-orthologous to human homeobox genes.
View Article and Find Full Text PDFNon-coding RNAs are a complex class of nucleic acids, with growing evidence supporting regulatory roles in gene expression. Here we identify a non-coding RNA located head-to-head with the gene encoding the Glioma-associated oncogene 1 (GLI1), a transcriptional effector of multiple cancer-associated signaling pathways. The expression of this three-exon GLI1 antisense (GLI1AS) RNA in cancer cells was concordant with GLI1 levels.
View Article and Find Full Text PDFThe exocyst is a conserved protein complex that is involved in tethering secretory vesicles to the plasma membrane and regulating cell polarity. Despite a large body of work, little is known how exocyst function is controlled. To identify regulators for exocyst function, we performed a targeted RNA interference (RNAi) screen in Caenorhabditis elegans to uncover kinases and phosphatases that genetically interact with the exocyst.
View Article and Find Full Text PDFBackground: Gcn5 belongs to a family of histone acetyltransferases (HATs) that regulate protein function by acetylation. Gcn5 plays several different roles in gene transcription throughout the genome but their characterisation by classical mutation approaches is hampered by the high degree of apparent functional redundancy between HAT proteins.
Results: Here we utilise the reduced redundancy associated with the transiently high levels of genomic reprogramming during stress adaptation as a complementary approach to understand the functions of redundant protein families like HATs.
Transcription factors play key roles in cell fate specification and cell differentiation. Previously, we showed that the LIM homeodomain factor CEH-14 is expressed in the AFD neurons where it is required for thermotaxis behavior in Caenorhabditis elegans. Here, we show that ceh-14 is expressed in the phasmid sensory neurons, PHA and PHB, a number of neurons in the tail, i.
View Article and Find Full Text PDFIn the nematode worm Caenorhabditis elegans and several other animal species, many ciliary genes are regulated by RFX (Regulatory Factor binding to the X-box) transcription factors (TFs), which bind to X-box promoter motifs and thereby directly activate ciliary gene expression. This setup (RFX TF/X-box/ciliary gene) makes it possible to search for novel ciliary gene candidates genome-wide by using the X-box promoter motif as a search parameter. We present a computational approach that (i) identifies and extracts from whole genomes genes and the corresponding promoter sequences and annotations; (ii) searches through promoters for regulatory sequence elements (like promoter motifs) by using training sets of known instances of these elements; (iii) scores (evaluates) and sorts all positive hits in a database; and (iv) outputs a list of candidate genes and promoters with a given regulatory sequence element.
View Article and Find Full Text PDFBackground: The Amoebozoa constitute one of the primary divisions of eukaryotes, encompassing taxa of both biomedical and evolutionary importance, yet its genomic diversity remains largely unsampled. Here we present an analysis of a whole genome assembly of Acanthamoeba castellanii (Ac) the first representative from a solitary free-living amoebozoan.
Results: Ac encodes 15,455 compact intron-rich genes, a significant number of which are predicted to have arisen through inter-kingdom lateral gene transfer (LGT).
Background: The dyslexia susceptibility 1 candidate 1 (DYX1C1) gene has recently been associated with dyslexia and reading scores in several population samples. The DYX1C1 has also been shown to affect neuronal migration and modulate estrogen receptor signaling.
Methods: We have analyzed the molecular networks of DYX1C1 by gene expression and protein interaction profiling in a human neuroblastoma cell line.
The homeodomain is a protein domain of about 60 amino acids that is encoded by homeobox genes. The homeodomain is a DNA binding domain, and hence homeodomain proteins are essentially transcription factors (TFs). They have been shown to play major roles in many developmental processes of animals, as well as fungi and plants.
View Article and Find Full Text PDFThe nervous system is composed of cells including neurons and glia. It has been believed that the former cells play central roles in various neural functions while the latter ones have only supportive functions for neurons. However, recent findings suggest that glial cells actively participate in neural activities, and the cooperation between neurons and glia is important for nervous system functions.
View Article and Find Full Text PDF