The presence of a large number of unique shapes called ligatures in cursive languages, along with variations due to scaling, orientation and location provides one of the most challenging pattern recognition problems. Recognition of the large number of ligatures is often a complicated task in oriental languages such as Pashto, Urdu, Persian and Arabic. Research on cursive script recognition often ignores the fact that scaling, orientation, location and font variations are common in printed cursive text.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
April 2011
Projection methods have been used in the analysis of bitonal document images for different tasks such as page segmentation and skew correction for more than two decades. However, these algorithms are sensitive to the presence of border noise in document images. Border noise can appear along the page border due to scanning or photocopying.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
June 2008
Informative benchmarks are crucial for optimizing the page segmentation step of an OCR system, frequently the performance limiting step for overall OCR system performance. We show that current evaluation scores are insufficient for diagnosing specific errors in page segmentation and fail to identify some classes of serious segmentation errors altogether. This paper introduces a vectorial score that is sensitive to, and identifies, the most important classes of segmentation errors (over-, under-, and mis-segmentation) and what page components (lines, blocks, etc.
View Article and Find Full Text PDF