Publications by authors named "Thomas Besnard"

While mostly de novo truncating variants in SCAF4 were recently identified in 18 individuals with variable neurodevelopmental phenotypes, knowledge on the molecular and clinical spectrum is still limited. We assembled data on 50 novel individuals with SCAF4 variants ascertained via GeneMatcher and personal communication. With detailed evaluation of clinical data, in silico predictions and structural modeling, we further characterized the molecular and clinical spectrum of the autosomal dominant SCAF4-associated neurodevelopmental disorder.

View Article and Find Full Text PDF

Identification of the first pathogenic branch point variant in the SMS gene in a large French non-consanguineous family with a phenotype retrospectively consistent with Snyder-Robinson syndrome. RT-PCR analysis followed by RNA-sequencing demonstrated that this variant, lead to the synthesis of a predominant aberrant transcript with complete intron 6 retention.

View Article and Find Full Text PDF
Article Synopsis
  • Glutathione synthetase deficiency is a rare genetic disorder caused by mutations in the GSS gene, leading to varying severity levels, from mild hemolytic anemia to severe neurological issues and even neonatal death.
  • A study on two fetal siblings revealed multiple congenital anomalies, such as limb malformations, cleft palate, and heart defects, linked to specific genetic variants in the GSS gene.
  • Genome sequencing and analysis indicated that these genetic variants likely caused disruptions in protein expression and metabolic processes, suggesting a broader range of phenotypic effects associated with glutathione synthetase deficiency.
View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a neurodevelopmental disorder (NDD) that affects approximately 4% of males and 1% of females in the United States. While causes of ASD are multi-factorial, single rare genetic variants contribute to around 20% of cases. Here, we report a case series of seven unrelated probands (6 males, 1 female) with ASD or another variable NDD phenotype attributed to de novo heterozygous loss of function or missense variants in the gene LARP1 (La ribonucleoprotein 1).

View Article and Find Full Text PDF
Article Synopsis
  • KMT2C and KMT2D are important enzymes that modify genes, with KMT2C haploinsufficiency recently linked to Kleefstra syndrome 2, a neurodevelopmental disorder (NDD) with unknown clinical details.
  • A study involving 98 individuals found that most pathogenic variants in KMT2C span nearly all its exons, making variant interpretation difficult; the study also established a KMT2C DNA methylation signature for better classification of the disorder.
  • Key features of KMT2C-related NDD include developmental delays, intellectual disabilities, and distinct facial characteristics, setting it apart from similar conditions like Kleefstra and Kabuki syndromes, indicating the need for its renaming and
View Article and Find Full Text PDF

Primary proteasomopathies have recently emerged as a new class of rare early-onset neurodevelopmental disorders (NDDs) caused by pathogenic variants in the PSMB1, PSMC1, PSMC3, or PSMD12 proteasome genes. Proteasomes are large multi-subunit protein complexes that maintain cellular protein homeostasis by clearing ubiquitin-tagged damaged, misfolded, or unnecessary proteins. In this study, we have identified PSMD11 as an additional proteasome gene in which pathogenic variation is associated with an NDD-causing proteasomopathy.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers found 23 specific changes in a gene related to this complex that affect 38 people, leading to problems with brain cell growth and learning in animals.
  • * By targeting certain stress response proteins, they discovered ways to help fix some of the immune issues caused by these disorders, leading to new ideas for treatments.
View Article and Find Full Text PDF

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs) mediate fast excitatory neurotransmission in the brain. AMPARs form by homo- or heteromeric assembly of subunits encoded by the GRIA1-GRIA4 genes, of which only GRIA3 is X-chromosomal. Increasing numbers of GRIA3 missense variants are reported in patients with neurodevelopmental disorders (NDD), but only a few have been examined functionally.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers found 15 new genetic variants in the PSMC3 gene, linked to a specific type of neurodevelopmental delay and intellectual disability in 23 unrelated patients.
  • Mouse and fruit fly experiments showed that these variants hindered normal neuron growth and learning abilities.
  • The variants were shown to disrupt proteasome function, leading to cellular stress and abnormal immune responses, suggesting a connection between proteasome issues and neurodevelopmental disorders.
View Article and Find Full Text PDF

Multi-omics offer worthwhile and increasingly accessible technologies to diagnostic laboratories seeking potential second-tier strategies to help patients with unresolved rare diseases, especially patients clinically diagnosed with a rare OMIM (Online Mendelian Inheritance in Man) disease. However, no consensus exists regarding the optimal diagnostic care pathway to adopt after negative results with standard approaches. In 15 unsolved individuals clinically diagnosed with recognizable OMIM diseases but with negative or inconclusive first-line genetic results, we explored the utility of a multi-step approach using several novel omics technologies to establish a molecular diagnosis.

View Article and Find Full Text PDF
Article Synopsis
  • SpliceAI is a powerful algorithm for predicting splicing defects in DNA, but it has drawbacks like difficult-to-interpret outputs, delta scores that can obscure severe issues, and limited handling of complex variations.
  • SpliceAI-visual is a new online tool that addresses these issues by using raw scores, offering a user-friendly graphical output, and being able to analyze complex genetic variants.
  • The tool is accessible as a Google Colab notebook and integrated into the MobiDetails variant interpretation platform, enhancing the assessment of splicing defects and facilitating the understanding of complex cases.
View Article and Find Full Text PDF

Purpose: We aimed to investigate the molecular basis of a novel recognizable neurodevelopmental syndrome with scalp and enamel anomalies caused by truncating variants in the last exon of the gene FOSL2, encoding a subunit of the AP-1 complex.

Methods: Exome sequencing was used to identify genetic variants in all cases, recruited through Matchmaker exchange. Gene expression in blood was analyzed using reverse transcription polymerase chain reaction.

View Article and Find Full Text PDF
Article Synopsis
  • Chromosomal microarray (CMA) is currently the preferred diagnostic tool for rare disorders, detecting copy number variations (CNVs) with a yield of 10%-20%, though whole exome sequencing (WES) and genome sequencing (WGS) are also available.
  • This study compares the effectiveness of CMA against GATK4 exome sequencing in identifying coding CNVs, utilizing a cohort of 615 individuals for validation and 2418 for a prospective analysis.
  • Results show that WES can improve diagnostic yield by a slight margin when used alongside SNV detection, suggesting it may be more beneficial to reevaluate CNVs before proceeding to WGS after inconclusive CMA or WES results.
View Article and Find Full Text PDF

The transmembrane protein TMEM147 has a dual function: first at the nuclear envelope, where it anchors lamin B receptor (LBR) to the inner membrane, and second at the endoplasmic reticulum (ER), where it facilitates the translation of nascent polypeptides within the ribosome-bound TMCO1 translocon complex. Through international data sharing, we identified 23 individuals from 15 unrelated families with bi-allelic TMEM147 loss-of-function variants, including splice-site, nonsense, frameshift, and missense variants. These affected children displayed congruent clinical features including coarse facies, developmental delay, intellectual disability, and behavioral problems.

View Article and Find Full Text PDF

Dehydrated hereditary stomatocytosis (DHS) (MIM#194380) is a rare autosomal dominant disorder of red blood cell permeability, characterized by a partially or fully compensated nonimmune hemolytic anemia. PIEZO1 is the major gene involved with hundreds of families described, some of which present transient perinatal edema of varying severity. A smaller subset of individuals harbors pathogenic variants in KCNN4, sometimes referred as "Gardos channelopathy.

View Article and Find Full Text PDF

Purpose: WNK3 kinase (PRKWNK3) has been implicated in the development and function of the brain via its regulation of the cation-chloride cotransporters, but the role of WNK3 in human development is unknown.

Method: We ascertained exome or genome sequences of individuals with rare familial or sporadic forms of intellectual disability (ID).

Results: We identified a total of 6 different maternally-inherited, hemizygous, 3 loss-of-function or 3 pathogenic missense variants (p.

View Article and Find Full Text PDF

Purpose: SRRM2 encodes the SRm300 protein, a splicing factor of the SR-related protein family characterized by its serine- and arginine-enriched domains. It promotes interactions between messenger RNA and the spliceosome catalytic machinery. This gene, predicted to be highly intolerant to loss of function (LoF) and very conserved through evolution, has not been previously reported in constitutive human disease.

View Article and Find Full Text PDF

Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome.

View Article and Find Full Text PDF

Covalent tRNA modifications play multi-faceted roles in tRNA stability, folding, and recognition, as well as the rate and fidelity of translation, and other cellular processes such as growth, development, and stress responses. Mutations in genes that are known to regulate tRNA modifications lead to a wide array of phenotypes and diseases including numerous cognitive and neurodevelopmental disorders, highlighting the critical role of tRNA modification in human disease. One such gene, THUMPD1, is involved in regulating tRNA N4-acetylcytidine modification (ac4C), and recently was proposed as a candidate gene for autosomal-recessive intellectual disability.

View Article and Find Full Text PDF
Article Synopsis
  • Nuclear deubiquitinase BAP1 is a crucial part of protein complexes that help regulate gene transcription by reversing the ubiquitination of histone 2A, and its loss can lead to cancer.
  • This study identified 11 rare, de novo germline BAP1 variants associated with a unique neurodevelopmental disorder, where most of these variants demonstrated a loss-of-function effect.
  • Functional analyses showed these variants impaired histone modifications, leading to significant changes in chromatin states and contributing to dysregulation of genes essential for development.
View Article and Find Full Text PDF

Purpose: Haploinsufficiency of PSMD12 has been reported in individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), facial dysmorphism, and congenital malformations, defined as Stankiewicz-Isidor syndrome (STISS). Investigations showed that pathogenic variants in PSMD12 perturb intracellular protein homeostasis. Our objective was to further explore the clinical and molecular phenotypic spectrum of STISS.

View Article and Find Full Text PDF

Purpose: ADP ribosylation factor guanine nucleotide exchange factors (ARFGEFs) are a family of proteins implicated in cellular trafficking between the Golgi apparatus and the plasma membrane through vesicle formation. Among them is ARFGEF1/BIG1, a protein involved in axon elongation, neurite development, and polarization processes. ARFGEF1 has been previously suggested as a candidate gene for different types of epilepsies, although its implication in human disease has not been well characterized.

View Article and Find Full Text PDF

Proteins involved in transcriptional regulation harbor a demonstrated enrichment of mutations in neurodevelopmental disorders. The Sin3 (Swi-independent 3)/histone deacetylase (HDAC) complex plays a central role in histone deacetylation and transcriptional repression. Among the two vertebrate paralogs encoding the Sin3 complex, SIN3A variants cause syndromic intellectual disability, but the clinical consequences of SIN3B haploinsufficiency in humans are uncharacterized.

View Article and Find Full Text PDF

ARHGEF9 defects lead to an X-linked intellectual disability disorder related to inhibitory synaptic dysfunction. This condition is more frequent in males, with a few affected females reported. Up to now, sequence variants and gross deletions have been identified in males, while only chromosomal aberrations have been reported in affected females who showed a skewed pattern of X-chromosome inactivation (XCI), suggesting an X-linked recessive (XLR) disorder.

View Article and Find Full Text PDF