Publications by authors named "Thomas Bernhardt"

The peptidoglycan (PG) cell wall is the primary protective layer of bacteria, making the process of PG synthesis a key antibiotic target. Class A penicillin-binding proteins (aPBPs) are a family of conserved and ubiquitous PG synthases that fortify and repair the PG matrix. In gram-negative bacteria, these enzymes are regulated by outer-membrane tethered lipoproteins.

View Article and Find Full Text PDF

The peptidoglycan (PG) cell wall is critical for bacterial growth and survival and is a primary antibiotic target. MreD is an essential accessory factor of the Rod complex, which carries out PG synthesis during elongation, yet little is known about how MreD facilitates this process. Here, we present the cryo-electron microscopy structure of MreD in complex with another essential Rod complex component, MreC.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a new platform that enhances the discovery of optical biosensors, enabling faster and more efficient development through genetically encodable fluorogenic amino acids (FgAAs).
  • The engineered nanosensors can detect specific proteins and small molecules with significant increases in fluorescence and fast response times, which are beneficial for real-time diagnostics and live-cell imaging.
  • This advanced system allows for rapid testing of numerous sensor candidates, improving sensitivity for detecting SARS-CoV-2 antigens and has the potential for broader applications in modifying proteins with unique functionalities.
View Article and Find Full Text PDF

Unlabelled: encodes the beta-lactamase AmpC, which promotes resistance to beta-lactam antibiotics. Expression of is induced by anhydro-muropeptides (AMPs) released from the peptidoglycan (PG) cell wall upon beta-lactam treatment. AmpC can also be induced via genetic inactivation of PG biogenesis factors such as the endopeptidase DacB that cleaves PG crosslinks.

View Article and Find Full Text PDF
Article Synopsis
  • The cell envelope of Mycobacteriales, including mycolic acids and peptidoglycan, plays a crucial role in protecting against antibiotics and contributes to the virulence of pathogens like Mycobacterium tuberculosis.
  • Research focused on Corynebacterium glutamicum uncovered that the σD envelope stress response is essential for exporting a porin in the mycomembrane, with MarP acting as the key protease.
  • The study revealed that the σD response is triggered by issues in mycolic acid and arabinogalactan biosynthesis, highlighting how bacteria sense and react to disruptions in their complex envelope structure.
View Article and Find Full Text PDF

Bacteria surround themselves with complex cell envelopes to maintain their integrity and protect against external insults. The envelope of Gram-negative organisms is multilayered, with two membranes sandwiching the periplasmic space that contains the peptidoglycan cell wall. Understanding how this complicated surface architecture is assembled during cell growth and division is a major fundamental problem in microbiology.

View Article and Find Full Text PDF

Protein lipidation dynamically controls protein localization and function within cellular membranes. A unique form of protein -fatty acylation in , termed protein -mycoloylation, involves the attachment of mycolic acids─unusually large and hydrophobic fatty acids─to serine residues of proteins in these organisms' outer mycomembrane. However, as with other forms of protein lipidation, the scope and functional consequences of protein -mycoloylation are challenging to investigate due to the inherent difficulties of enriching and analyzing lipidated peptides.

View Article and Find Full Text PDF

Staphylococcus aureus is a Gram-positive pathogen responsible for antibiotic-resistant infections. To identify vulnerabilities in cell envelope biogenesis that may overcome resistance, we enriched for S. aureus transposon mutants with defects in cell surface integrity or cell division by sorting for cells that stain with propidium iodide or have increased light-scattering properties, respectively.

View Article and Find Full Text PDF

Unlabelled: Single-strand RNA (ssRNA) and single-strand DNA phages elicit host lysis using a single gene, in each case designated as . Of the 11 identified Sgls, three have been shown to be specific inhibitors of different steps in the pathway that supplies lipid II to the peptidoglycan (PG) biosynthesis machinery. These Sgls have been called "protein antibiotics" because the lytic event is a septal catastrophe indistinguishable from that caused by cell wall antibiotics.

View Article and Find Full Text PDF

Many bacterial surface glycans such as the peptidoglycan (PG) cell wall are built from monomeric units linked to a polyprenyl lipid carrier. How this limiting carrier is distributed among competing pathways has remained unclear. Here we describe the isolation of hyperactive variants of Pseudomonas aeruginosa MraY, the enzyme that forms the first lipid-linked PG precursor.

View Article and Find Full Text PDF

Gram-negative bacteria are surrounded by two membranes. A special feature of the outer membrane is its asymmetry. It contains lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner leaflet.

View Article and Find Full Text PDF

Until recently only 11 distinct Sgls (single gene lysis proteins) have been experimentally identified. Of these, three have been shown to be specific inhibitors of different steps in the pathway that supplies Lipid II to the peptidoglycan (PG) biosynthesis machinery: Qβ A inhibits MurA, ϕX174 E inhibits MraY, and Lys from coliphage M inhibits MurJ. These Sgls have been called "protein antibiotics" because the lytic event is a septal catastrophe indistinguishable from that caused by cell wall antibiotics.

View Article and Find Full Text PDF
Article Synopsis
  • Class A penicillin-binding proteins (aPBPs) are crucial for bacterial cell wall construction and are key targets for antibiotics like penicillin.
  • This study identifies variants of the enzyme PBP2a that can work independently of its typical partner, MacP, revealing that specific amino acid changes can activate its cell wall synthesis function.
  • The findings also suggest a shared activation mechanism for PBP2a and other aPBPs across different organisms, enhancing our understanding of bacterial cell wall regulation.
View Article and Find Full Text PDF

The cell envelope of Gram-negative bacteria consists of three distinct layers: the cytoplasmic membrane, a cell wall made of peptidoglycan (PG), and an asymmetric outer membrane (OM) composed of phospholipid in the inner leaflet and lipopolysaccharide (LPS) glycolipid in the outer leaflet. The PG layer has long been thought to be the major structural component of the envelope protecting cells from osmotic lysis and providing them with their characteristic shape. In recent years, the OM has also been shown to be a load-bearing layer of the cell surface that fortifies cells against internal turgor pressure.

View Article and Find Full Text PDF

Many bacterial surface glycans such as the peptidoglycan (PG) cell wall, O-antigens, and capsules are built from monomeric units linked to a polyprenyl lipid carrier. How this limiting lipid carrier is effectively distributed among competing pathways has remained unclear for some time. Here, we describe the isolation and characterization of hyperactive variants of MraY, the essential and conserved enzyme catalyzing the formation of the first lipid-linked PG precursor called lipid I.

View Article and Find Full Text PDF

The peptidoglycan (PG) cell wall protects bacteria against osmotic lysis and determines cell shape, making this structure a key antibiotic target. Peptidoglycan is a polymer of glycan chains connected by peptide crosslinks, and its synthesis requires precise spatiotemporal coordination between glycan polymerization and crosslinking. However, the molecular mechanism by which these reactions are initiated and coupled is unclear.

View Article and Find Full Text PDF

The peptidoglycan (PG) cell wall produced by the bacterial division machinery is initially shared between the daughters and must be split to promote cell separation and complete division. In gram-negative bacteria, enzymes that cleave PG called amidases play major roles in the separation process. To prevent spurious cell wall cleavage that can lead to cell lysis, amidases like AmiB are autoinhibited by a regulatory helix.

View Article and Find Full Text PDF

is a gram-positive pathogen responsible for life-threatening infections that are difficult to treat due to antibiotic resistance. The identification of new vulnerabilities in essential processes like cell envelope biogenesis represents a promising avenue towards the development of anti-staphylococcal therapies that overcome resistance. To this end, we performed cell sorting-based enrichments for mutants with defects in envelope integrity and cell division.

View Article and Find Full Text PDF

Gram-negative bacteria surround their cytoplasmic membrane with a peptidoglycan (PG) cell wall and an outer membrane (OM) with an outer leaflet composed of lipopolysaccharide (LPS). This complex envelope presents a formidable barrier to drug entry and is a major determinant of the intrinsic antibiotic resistance of these organisms. The biogenesis pathways that build the surface are also targets of many of our most effective antibacterial therapies.

View Article and Find Full Text PDF

Unlabelled: The cell envelope of Gram-negative bacteria consists of three distinct layers: the cytoplasmic membrane, a cell wall made of peptidoglycan (PG), and an asymmetric outer membrane (OM) composed of phospholipid in the inner leaflet and lipopolysaccharide (LPS) glycolipid in the outer leaflet. The PG layer has long been thought to be the major structural component of the envelope protecting cells from osmotic lysis and providing them with their characteristic shape. In recent years, the OM has also been shown to be a load-bearing layer of the cell surface that fortifies cells against internal turgor pressure.

View Article and Find Full Text PDF

Bacteria of the order Corynebacteriales including pathogens such as and are characterized by their complex, multi-layered envelope. In addition to a peptidoglycan layer, these organisms possess an additional polysaccharide layer made of arabinogalactan and an outer membrane layer composed predominantly of long-chain fatty acids called mycolic acids. This so-called mycolata envelope structure is both a potent barrier against antibiotic entry into cells and a target of several antibacterial therapeutics.

View Article and Find Full Text PDF

The bacterial division apparatus catalyses the synthesis and remodelling of septal peptidoglycan (sPG) to build the cell wall layer that fortifies the daughter cell poles. Understanding of this essential process has been limited by the lack of native three-dimensional views of developing septa. Here, we apply state-of-the-art cryogenic electron tomography (cryo-ET) and fluorescence microscopy to visualize the division site architecture and sPG biogenesis dynamics of the Gram-negative bacterium Escherichia coli.

View Article and Find Full Text PDF

Penicillin and related antibiotics disrupt cell wall synthesis in bacteria causing the downstream misactivation of cell wall hydrolases called autolysins to induce cell lysis. Despite the clinical importance of this phenomenon, little is known about the factors that control autolysins and how penicillins subvert this regulation to kill cells. In the pathogen (), LytA is the major autolysin responsible for penicillin-induced bacteriolysis.

View Article and Find Full Text PDF

A cell wall made of the heteropolymer peptidoglycan (PG) surrounds most bacterial cells. This essential surface layer is required to prevent lysis from internal osmotic pressure. The class A penicillin-binding proteins (aPBPs) play key roles in building the PG network.

View Article and Find Full Text PDF

Most bacteria are surrounded by a peptidoglycan cell wall that defines their shape and protects them from osmotic lysis. The expansion and division of this structure therefore plays an integral role in bacterial growth and division. Additionally, the biogenesis of the peptidoglycan layer is the target of many of our most effective antibiotics.

View Article and Find Full Text PDF