Publications by authors named "Thomas Bergs"

Glassy carbon provides material characteristics that make it a promising candidate for use as a mould material in precision glass moulding. However, to effectively utilize glassy carbon, a thorough investigation into the machining of high-precision optical surfaces is necessary, which has not been thoroughly investigated. This research analyses the process of material removal and its resulting surface integrity through the use of nano-scratching and ultra-precision grinding.

View Article and Find Full Text PDF

Precise infrared (IR) optics are core elements of infrared cameras for thermal imaging and night vision applications and can be manufactured directly or using a replicative process. For instance, precision glass molding (PGM) is a replicative manufacturing method that meets the demand of producing precise and accurate glass optics in a cost-efficient manner. However, several iterations in the PGM process are applied to compensate the induced form deviation and the index drop after molding.

View Article and Find Full Text PDF

Laser technology has a rising demand for high precision Fused Silica components. Precision Glass Moulding (PGM) is a technology that can fulfil the given demands in efficiency and scalability. Due to the elevated process temperatures of almost 1400 °C and the high mechanical load, Glassy Carbon was qualified as an appropriate forming tool material for the moulding of Fused Silica.

View Article and Find Full Text PDF

Because of the limitation of manufacturing capability, free-form glass optics cannot be produced in a large volume using traditional processes such as grinding, lapping, and polishing. Very recently compression molding of glass optics became a viable manufacturing process for the high-volume production of precision glass optical components. An ultraprecision diamond-turning machine retrofitted with a fast tool servo was used to fabricate a free-form optical mold on a nickel-plated surface.

View Article and Find Full Text PDF