A meeting, sponsored by the Bill and Melinda Gates Foundation (BMGF) and organised by Clinglobal, was held at The International Livestock Research Institute (ILRI) in Nairobi, Kenya, from 19th - to 21st October 2022. The meeting assembled a unique group of experts on tick control in Africa. Academia, international agencies (FAO and ILRI), the private Animal Health sector and government veterinary services were represented.
View Article and Find Full Text PDFBackground: East Coast fever (ECF) caused by Theileria parva is endemic in Rwanda. In this study, the antigenic and genetic diversity of T. parva coupled with immunization and field challenge were undertaken to provide evidence for the introduction of ECF immunization in Rwanda.
View Article and Find Full Text PDFTheileria parva is the causative agent of a lethal tick-borne disease of cattle occurring in eastern, central and southern Africa. Variations in the sensitivity of the serological and molecular tests with seasonal vector occurrence and discrepancies between low PCR prevalence and high T. parva vector density are a setback to estimate true prevalences.
View Article and Find Full Text PDFAs part of the epidemiological studies aimed at developing an East Coast fever (ECF) immunisation control strategy, which combines an infection and treatment method with strategic tick control, a countrywide tick survey was carried out in both the dry and the wet season to determine the abundance and the dynamics of the tick populations infesting cattle in Rwanda. Six Ixodid tick species where identified from a total of 12,814 tick specimens collected. Rhipicephalus appendiculatus, the main vector of ECF was the most abundant (91.
View Article and Find Full Text PDFGenetic diversity and structural organisation of the polymorphic immunodominant molecule (PIM) gene of the protozoan parasite Theileria parva was studied in isolates from sympatric and allopatric areas. The analyses revealed a mosaic structure consisting of highly conserved regions shared among some of the isolates from geographically different areas and homologous sequence runs shared among isolates from one area. The specific pattern of diversity in which large insertions and deletions were observed, giving a mosaic structure to the PIM locus, is quite exceptional for single-locus genes.
View Article and Find Full Text PDF