Publications by authors named "Thomas Bartnikas"

Article Synopsis
  • Iron is crucial for health but can be toxic in high amounts; deficiencies are common due to low intake, while excess often stems from genetic issues affecting hepcidin, a hormone regulating iron absorption.
  • Research shows that mice on iron-rich diets have higher bile levels of iron and ferritin, sparking interest in whether genetic forms of iron overload, like hereditary hemochromatosis, also lead to elevated bile iron.
  • Studies found that mutant mice lacking hemojuvelin (needed for hepcidin) showed increased bile iron and ferritin, with varying bile protein content based on sex, indicating that genetic factors influence how the body manages excess iron.
View Article and Find Full Text PDF

SLC30A10 deficiency is a disease of severe manganese excess attributed to loss of SLC30A10-dependent manganese excretion via the gastrointestinal tract. Patients develop dystonia, cirrhosis, and polycythemia. They are treated with chelators but also respond to oral iron, suggesting that iron can outcompete manganese for absorption in this disease.

View Article and Find Full Text PDF

Manganese is an essential yet potentially toxic metal. Initially reported in 2012, mutations in SLC30A10 are the first known inherited cause of manganese excess. SLC30A10 is an apical membrane protein that exports manganese from hepatocytes into bile and from enterocytes into the lumen of the gastrointestinal tract.

View Article and Find Full Text PDF

The manganese (Mn) export protein SLC30A10 is essential for Mn excretion via the liver and intestines. Patients with SLC30A10 deficiency develop Mn excess, dystonia, liver disease, and polycythemia. Recent genome-wide association studies revealed a link between the SLC30A10 variant T95I and markers of liver disease.

View Article and Find Full Text PDF

Manganese is an essential yet potentially toxic metal. Initially reported in 2012, mutations in SLC30A10 are the first known inherited cause of manganese excess. SLC30A10 is an apical membrane transport protein that exports manganese from hepatocytes into bile and from enterocytes into the lumen of the gastrointestinal tract.

View Article and Find Full Text PDF

An abundant metal in the human body, iron is essential for key biological pathways including oxygen transport, DNA metabolism, and mitochondrial function. Most iron is bound to heme but it can also be incorporated into iron-sulfur clusters or bind directly to proteins. Iron's capacity to cycle between Fe and Fe contributes to its biological utility but also renders it toxic in excess.

View Article and Find Full Text PDF

Iron is essential for erythropoiesis and other biological processes, but is toxic in excess. Dietary absorption of iron is a highly regulated process and is a major determinant of body iron levels. Iron excretion, however, is considered a passive, unregulated process, and the underlying pathways are unknown.

View Article and Find Full Text PDF

Background And Aims: Bacterial swarming, a collective movement on a surface, has rarely been associated with human pathophysiology. This study aims to define a role for bacterial swarmers in amelioration of intestinal stress.

Methods: We developed a polymicrobial plate agar assay to detect swarming and screened mice and humans with intestinal stress and inflammation.

View Article and Find Full Text PDF

Manganese (Mn), an essential metal, can be toxic at elevated levels. In 2012, the first inherited cause of Mn excess was reported in patients with mutations in SLC30A10, a Mn efflux transporter. To explore the function of SLC30A10 in vitro, the current study used CRISPR/Cas9 gene editing to develop a stable SLC30A10 mutant Hep3B hepatoma cell line and collagenase perfusion in live mice to isolate primary hepatocytes deficient in Slc30a10.

View Article and Find Full Text PDF

In this issue of , Enns et al demonstrate that the mechanism of action of TMPRSS6, a key regulator of iron homeostasis, may differ from early predictions or assumptions. This finding has implications not only for our understanding of basic mechanisms of iron biology but also for the development of new pharmacologic agents that exploit or target TMPRSS6 to treat anemias and iron-related diseases.

View Article and Find Full Text PDF

Purpose Of Review: This review summarizes recent basic science studies on homeostasis of iron, an essential dietary nutrient and potentially toxic metal, and explores the relevance of these studies to our understanding of trauma and related severe, acute events.

Recent Findings: Recent studies in experimental models of iron homeostasis have added to our understanding of how iron levels are regulated in the body and how iron levels and iron-dependent biological processes contribute to trauma and related events. Iron deficiency, a common nutritional disorder, can impair critical organ function and wound and injury repair.

View Article and Find Full Text PDF

Manganese (Mn), an essential metal and nutrient, is toxic in excess. Toxicity classically results from inhalational exposures in individuals who work in industrial settings. The first known disease of inherited Mn excess, identified in 2012, is caused by mutations in the metal exporter SLC30A10 and is characterized by Mn excess, dystonia, cirrhosis, and polycythemia.

View Article and Find Full Text PDF

Excessive iron increases the incidence of diabetes and worsens diabetic complications. Reciprocally, diabetes induces iron loading, partially attributable to elevated intestinal iron export according to a recent report. Herein, we show that iron uptake and the mRNA expression of iron importer divalent metal transporter 1 (DMT1) were significantly increased in the duodenum of streptozotocin-induced diabetic mice.

View Article and Find Full Text PDF

The current paradigm in the field of mammalian iron biology states that body iron levels are determined by dietary iron absorption, not by iron excretion. Iron absorption is a highly regulated process influenced by iron levels and other factors. Iron excretion is believed to occur at a basal rate irrespective of iron levels and is associated with processes such as turnover of intestinal epithelium, blood loss, and exfoliation of dead skin.

View Article and Find Full Text PDF

The bone morphogenetic protein (BMP) type I receptors ALK2 and ALK3 are essential for expression of hepcidin, a key iron regulatory hormone. In mice, hepatocyte-specific Alk2 deficiency leads to moderate iron overload with periportal liver iron accumulation, while hepatocyte-specific Alk3 deficiency leads to severe iron overload with centrilobular liver iron accumulation and a more marked reduction of basal hepcidin levels. The objective of this study was to investigate whether the two receptors have additive roles in hepcidin regulation.

View Article and Find Full Text PDF

High dose manganese (Mn) exposure can result in changes in tissue concentrations of other essential metals due to Mn-induced alterations in metal absorption and competition for metal transporters and regulatory proteins. We evaluated responses in mice with a Parkin gene defect (parkin mice) and a wildtype strain (C57BL/6J) following neonatal Mn exposure. Neonatal parkin and C57BL/6J littermates were randomly assigned to 0, 11, or 25 mg Mn/kg-day dose groups with oral exposures occurring from postnatal day (PND) 1 through PND 28.

View Article and Find Full Text PDF

It has been suggested that childhood exposure to neurotoxicants may increase the risk of Parkinson's disease (PD) or other neurodegenerative disease in adults. Some recessive forms of PD have been linked to loss-of-function mutations in the Park2 gene that encodes for parkin. The purpose of this pilot study was to evaluate whether responses to neonatal manganese (Mn) exposure differ in mice with a Park2 gene defect (parkin mice) when compared with a wildtype strain (C57BL/6J).

View Article and Find Full Text PDF

Trace metals are essential for health but toxic when present in excess. The maintenance of trace metals at physiologic levels reflects both import and export by cells and absorption and excretion by organs. The mechanism by which this maintenance is achieved in vertebrate organisms is incompletely understood.

View Article and Find Full Text PDF

Manganese is an essential dietary nutrient and trace element with important roles in mammalian development, metabolism, and antioxidant defense. In healthy individuals, gastrointestinal absorption and hepatobiliary excretion are tightly regulated to maintain systemic manganese concentrations at physiologic levels. Interactions of manganese with other essential metals following high dose ingestion are incompletely understood.

View Article and Find Full Text PDF

Here we present data on liver metal levels and expression of genes related to iron homeostasis in rhesus monkeys after inhalational manganese exposure. Archived liver samples from rhesus monkeys exposed to 0 (n=6), 0.06 (n=6), 0.

View Article and Find Full Text PDF

Concerns exist as to whether individuals may be at greater risk for neurotoxicity following increased manganese (Mn) oral intake. The goals of this study were to determine the equivalence of 3 methods of oral exposure and the rate (mg Mn/kg/day) of exposure. Adult male rats were allocated to control diet (10 ppm), high manganese diet (200 ppm), manganese-supplemented drinking water, and manganese gavage treatment groups.

View Article and Find Full Text PDF

The hypotransferrinemic (hpx) mouse is a model of inherited transferrin deficiency that originated several decades ago in the BALB/cJ mouse strain. Also known as the hpx mouse, this line is almost completely devoid of transferrin, an abundant serum iron-binding protein. Two of the most prominent phenotypes of the hpx mouse are severe anemia and tissue iron overload.

View Article and Find Full Text PDF

Mice have been essential for distinguishing the role of hepcidin in iron homeostasis. Currently, investigators monitor levels of murine hepatic hepcidin-1 mRNA as a surrogate marker for the bioactive hepcidin protein itself. Here, we describe and validate a competitive, enzyme-linked immunosorbent assay that quantifies hepcidin-1 in mouse serum and urine.

View Article and Find Full Text PDF