Publications by authors named "Thomas Banitz"

When reasoning about causes of sustainability problems and possible solutions, sustainability scientists rely on disciplinary-based understanding of cause-effect relations. These disciplinary assumptions enable and constrain how causal knowledge is generated, yet they are rarely made explicit. In a multidisciplinary field like sustainability science, lack of understanding differences in causal reasoning impedes our ability to address complex sustainability problems.

View Article and Find Full Text PDF

The use of mechanistic population models as research and decision-support tools in ecology and ecological risk assessment (ERA) is increasing. This growth has been facilitated by advances in technology, allowing the simulation of more complex systems, as well as by standardized approaches for model development, documentation, and evaluation. Mechanistic population models are particularly useful for simulating complex systems, but the required model complexity can make them challenging to communicate.

View Article and Find Full Text PDF

Assessing and predicting the persistence of populations is essential for the conservation and control of species. Here, we argue that local mechanisms require a better conceptual synthesis to facilitate a more holistic consideration along with regional mechanisms known from metapopulation theory. We summarise the evidence for local buffer mechanisms along with their capacities and emphasise the need to include multiple buffer mechanisms in studies of population persistence.

View Article and Find Full Text PDF
Article Synopsis
  • Individual-based modeling helps explore the ecological factors that influence microbial communities by simulating individual behaviors based on specific rules.
  • Next-generation individual-based models, which are built on sound principles, can effectively mimic real ecological dynamics but are difficult to implement due to their complexity and the need for programming skills.
  • McComedy is introduced as a user-friendly tool for creating these models by allowing users to combine pre-existing components that simulate biological and physical processes, ultimately enhancing research and education in microbial ecology.
View Article and Find Full Text PDF

Fungi and bacteria often share common microhabitats. Their co-occurrence and coevolution give rise to manifold ecological interactions in the mycosphere, here defined as the microhabitats surrounding and affected by hyphae and mycelia. The extensive structure of mycelia provides ideal "logistic networks" for transport of bacteria and matter in structurally and chemically heterogeneous soil ecosystems.

View Article and Find Full Text PDF

Terrestrial microbial ecosystems are exposed to many types of disturbances varying in their spatial and temporal characteristics. The ability to cope with these disturbances is crucial for maintaining microbial ecosystem functions, especially if disturbances recur regularly. Thus, understanding microbial ecosystem dynamics under recurrent disturbances and identifying drivers of functional stability and thresholds for functional collapse is important.

View Article and Find Full Text PDF

Bacterial degradation of organic compounds is an important ecosystem function with relevance to, e.g., the cycling of elements or the degradation of organic contaminants.

View Article and Find Full Text PDF

Fungal-bacterial interactions are highly diverse and contribute to many ecosystem processes. Their emergence under common environmental stress scenarios however, remains elusive. Here we use a synthetic microbial ecosystem based on the germination of Bacillus subtilis spores to examine whether fungal and fungal-like (oomycete) mycelia reduce bacterial water and nutrient stress in an otherwise dry and nutrient-poor microhabitat.

View Article and Find Full Text PDF

Contaminant biodegradation in soils is hampered by the heterogeneous distribution of degrading communities colonizing isolated microenvironments as a result of the soil architecture. Over the last years, soil salinization was recognized as an additional problem especially in arid and semiarid ecosystems as it drastically reduces the activity and motility of bacteria. Here, we studied the importance of different spatial processes for benzoate biodegradation at an environmentally relevant range of osmotic potentials (ΔΨo) using model ecosystems exhibiting a heterogeneous distribution of the soil-borne bacterium Pseudomonas putida KT2440.

View Article and Find Full Text PDF

The quantitative relationship between a compound's availability for biological removal and ecotoxicity is a key issue for retrospective risk assessment and remediation approaches. Here, we investigated the impact of facilitated bacterial dispersal at a model soil-atmosphere interface on the release, degradation, and outgassing of a semivolatile contaminant. We designed a laboratory microcosm with passive dosing of phenanthrene (PHE) to a model soil-atmosphere interface (agar surface) in the presence and absence of glass fibers known to facilitate the dispersal of PHE-degrading Pseudomonas fluorescens LP6a.

View Article and Find Full Text PDF

Fungal mycelia serve as effective dispersal networks for bacteria in water-unsaturated environments, thereby allowing bacteria to maintain important functions, such as biodegradation. However, poor knowledge exists on the effects of dispersal networks at various osmotic (Ψo) and matric (Ψm) potentials, which contribute to the water potential mainly in terrestrial soil environments. Here we studied the effects of artificial mycelium-like dispersal networks on bacterial dispersal dynamics and subsequent effects on growth and benzoate biodegradation at ΔΨo and ΔΨm values between 0 and -1.

View Article and Find Full Text PDF
Article Synopsis
  • * In a microbial model system, the study reveals that the roles and interactions of species change with environmental conditions, leading to different levels of functional redundancy.
  • * The findings highlight the importance of species richness, as it ensures a variety of species with relevant traits that may become crucial after environmental changes, challenging the idea that functional redundancy is consistent across different contexts.
View Article and Find Full Text PDF

Based on experimental studies, two different fungus-mediated transport mechanisms have been suggested to facilitate the bacterial degradation of organic soil pollutants: bacteria may use liquid films around fungal hyphae for quick dispersal ('fungal highways'), and fungi may take up and translocate pollutants through their mycelial network ('fungal pipelines'). Both mechanisms are anticipated to enhance the bioavailability of pollutants to degrading bacteria. Using a microbial simulation model, we therefore investigated their respective efficiency in increasing biodegradation performance.

View Article and Find Full Text PDF

Bacterial degradation is an ecosystem service that offers a promising method for the remediation of contaminated soils. To assess the dynamics and efficiency of bacterial degradation, reliable microbial simulation models, along with the relevant processes, are required. We present an approach aimed at improving reliability by studying the relevance and implications of an important concept from theoretical ecology in the context of a bacterial system: conditional dispersal denoting that the dispersal strategy depends on environmental conditions.

View Article and Find Full Text PDF

Successful biodegradation of organic soil pollutants depends on their bioavailability to catabolically active microorganisms. In particular, environmental heterogeneities often limit bacterial access to pollutants. Experimental and modelling studies revealed that fungal networks can facilitate bacterial dispersal and may thereby improve pollutant bioavailability.

View Article and Find Full Text PDF