Cancer remains the second most frequent cause of death in human populations worldwide, which has been reflected in the emphasis placed on management of risk from environmental chemicals considered to be potential human carcinogens. The formation of DNA adducts has been considered as one of the key events of cancer, and persistence and/or failure of repair of these adducts may lead to mutation, thus initiating cancer. Some chemical carcinogens can produce DNA adducts, and DNA adducts have been used as biomarkers of exposure.
View Article and Find Full Text PDFRegul Toxicol Pharmacol
June 2016
In 2013, we proposed a novel bottom-up approach to bounding low-dose cancer risks that may result from small exogenous exposures to chemicals that are always present in the body as a result of normal biological processes. The approach utilizes the background cancer risk and the background (endogenous) concentration of a cancer-related exposure biomarker in specific target tissues. After allowing for statistical uncertainty in these two parameters, the ratio of the background risk to background exposure provides a conservative slope factor estimate that can be utilized to bound the added risk that may be associated with incremental exogenous exposures.
View Article and Find Full Text PDFFormaldehyde is not only a widely used chemical with well-known carcinogenicity but is also a normal metabolite of living cells. It thus poses unique challenges for understanding risks associated with exposure. N(2-)hydroxymethyl-dG (N(2)-HOMe-dG) is the main formaldehyde-induced DNA mono-adduct, which together with DNA-protein crosslinks (DPCs) and toxicity-induced cell proliferation, play important roles in a mutagenic mode of action for cancer.
View Article and Find Full Text PDFPerfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) are ubiquitous synthetic chemicals with no known effect on human cancer development. This article systematically and critically reviews the epidemiologic evidence regarding the association between PFOA and PFOS exposure and cancer risk in humans. Eighteen epidemiologic studies - eight of PFOA, four of PFOS, and six of both PFOA and PFOS - have estimated associations of exposure to these chemicals with cancer incidence or mortality, with studies equally divided between occupational and nonoccupational settings.
View Article and Find Full Text PDFThe US Environmental Protection Agency (USEPA) is currently conducting a toxicological review of vanadium pentoxide (V2O5). As part of that effort, the Agency will need to address the fact that while a National Toxicology Program (NTP) chronic inhalation bioassay of V2O5 produced clear evidence of treatment-related lung tumors in both male and female B6C3F1 mice, neither of these responses were dose-related across the groups exposed to 1, 2, and 4mg/m(3). While lung tumor incidence was significantly elevated in all three exposed groups relative to that in the control groups, it was essentially flat across them.
View Article and Find Full Text PDFRegul Toxicol Pharmacol
April 2013
We propose a novel bottom-up approach to the bounding of low-dose human cancer risks from chemical exposures that does not rely at all upon high-dose data for human or animal cancers. This approach can thus be used to provide an independent "reality check" on low-dose risk estimates derived with dose-response models that are fit to high-dose cancer data. The approach (1) is consistent with the "additivity to background" concept, (2) yields central and upper-bound risk estimates that are linear at all doses, and (3) requires only information regarding background risk, background (endogenous) exposure, and the additional exogenous exposure of interest in order to be implemented.
View Article and Find Full Text PDFFormaldehyde is a widely used high production chemical that is also released as a byproduct of combustion, off-gassing of various building products, and as a fixative for pathologists and embalmers. What is not often realized is that formaldehyde is also produced as a normal physiologic chemical in all living cells. In 1980, chronic inhalation of high concentrations of formaldehyde was shown to be carcinogenic, inducing a high incidence of nasal squamous cell carcinomas in rats.
View Article and Find Full Text PDFThe National Toxicology Program (NTP) chronic inhalation bioassay of vanadium pentoxide (V(2)O(5)) produced "clear" evidence of lung tumors in B6C3F1 mice, but only "some" and "equivocal" evidence in male and female F344/N rats, respectively. No significant pairwise differences or trends with V(2)O(5) concentration in male or female rat poly-3-adjusted tumor incidence were reported. The "some" and "equivocal" evidence descriptors arose from comparisons of V(2)O(5)-exposed group incidence rates with NTP-2000- and NIH-07-fed historical control (HC) group incidence ranges.
View Article and Find Full Text PDFJ Toxicol Environ Health B Crit Rev
October 2010
There is a strong need for science-based risk assessment that utilizes known data from diverse sources to arrive at accurate assessments of human health risk. Such assessments will protect the public health without mandating unreasonable regulation. This paper utilizes 30 years of research on three "known human carcinogens": formaldehyde, vinyl chloride (VC), and ethylene oxide (EO), each of which forms DNA adducts identical to endogenous DNA adducts in all individuals.
View Article and Find Full Text PDFRegul Toxicol Pharmacol
December 2007
A revised assessment of dichloromethane (DCM) has recently been reported that examines the influence of human genetic polymorphisms on cancer risks using deterministic PBPK and dose-response modeling in the mouse combined with probabilistic PBPK modeling in humans. This assessment utilized Bayesian techniques to optimize kinetic variables in mice and humans with mean values from posterior distributions used in the deterministic modeling in the mouse. To supplement this research, a case study was undertaken to examine the potential impact of probabilistic rather than deterministic PBPK and dose-response modeling in mice on subsequent unit risk factor (URF) determinations.
View Article and Find Full Text PDFWe examined the relation between cancer mortality and time-dependent cumulative exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) estimated from a concentration- and age-dependent kinetic model of elimination, and we estimated incremental cancer risks at age 75. Data from the National Institute for Occupational Safety and Health study of 3,538 workers with occupational exposure to TCDD were analyzed using standardized mortality ratios and Cox regression procedures. Analyses adjusted for potential confounding by age, year of birth, and race and considered exposure lag periods of 0, 10, or 15 years.
View Article and Find Full Text PDFThe recent National Toxicology Program (NTP) cancer bioassays for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 2,3,4,7,8-pentachlorodibenzofuran (4-PeCDF) permit a reevaluation of the current TEF value of 4-PeCDF. The data also allow for the derivation of relative potency factors (RPFs) for cancer, which are based not only on administered dose but also on potentially more informative dose metrics, such as liver concentration, area under the liver concentration curve, and lifetime average body burden. Our analyses of these data indicate that chi-squared tests of observed versus predicted liver tumor incidence for 4-PeCDF reject the current TEF value of 0.
View Article and Find Full Text PDFRecent studies demonstrating a concentration dependence of elimination of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suggest that previous estimates of exposure for occupationally exposed cohorts may have underestimated actual exposure, resulting in a potential overestimate of the carcinogenic potency of TCDD in humans based on the mortality data for these cohorts. Using a database on U.S.
View Article and Find Full Text PDFInhibition of red blood cell (RBC) cholinesterase is a consistent and sensitive indicator of exposure to dichlorvos (DDVP). Absent human data, default 10-fold adjustment factors for potential interspecies and intraspecies sensitivity differences would be used in developing a reference dose from the no observed effect levels for this endpoint obtained in toxicological assessments of laboratory animals. However, many studies of the cholinesterase-inhibiting effects associated with DDVP exposure have been conducted in humans, including healthy male volunteers, other healthy subpopulations, and diverse clinical subpopulations.
View Article and Find Full Text PDFRegul Toxicol Pharmacol
June 2005
The extensive data from the Blair et al.((1)) epidemiology study of occupational acrylonitrile exposure among 25460 workers in eight plants in the United States provide an excellent opportunity to update quantitative risk assessments for this widely used commodity chemical. We employ the semiparametric Cox relative risk (RR) regression model with a cumulative exposure metric to model cause-specific mortality from lung cancer and all other causes.
View Article and Find Full Text PDFA biologically based approach was taken to developing an inhalation Reference Concentration (RfC) for methanol, a high production volume chemical with many commercial applications, including use as an alternative fuel for motor vehicles and as a hydrogen source for fuel cells. Benchmark Dose methodology was applied to the most sensitive toxic endpoint for assessing potential health risks in humans, cervical rib malformation data obtained using CD-1 mice. The concentration of methanol in circulating blood was employed as the dose metric, and the maximum likelihood estimate of the blood methanol increment causing a 10% extra risk of these malformations, was 215.
View Article and Find Full Text PDFEnviron Health Perspect
September 2003
Consistent with results from an earlier U.S. Environmental Protection Agency meta-analysis of three occupational cohorts, Crump et al.
View Article and Find Full Text PDFDisinfection of surface water for human consumption results in the generation of a complex mixture of chemicals in potable water. Cancer risk assessment methodology assumes additivity of carcinogenic effects in the regulation of mixtures. A rodent model of hereditary renal cancer was used to investigate the carcinogenic response to a mixture of drinking water disinfection by-products (DBPs).
View Article and Find Full Text PDF