Publications by authors named "Thomas B Simpson"

Semiconductor lasers subjected to strong current modulation produce gain-switched optical pulse trains. These lasers can also produce pulse trains at sub-harmonic repetition rates relative to the driving current modulation. We experimentally observe, and numerically model, that these pulse trains can be interrupted by single-cycle extreme pulses whose characteristics and statistics are similar to rogue waves.

View Article and Find Full Text PDF

We experimentally demonstrate the generation of microwave signals with linewidths below 3 Hz and a tuning range over 35 GHz from a semiconductor laser subject to optical injection and opto-electronic feedback. The feedback loop uses neither a microwave spectral filter nor an amplifier to achieve a reduction in the microwave linewidth of six orders of magnitude. Two microwave frequencies, 25.

View Article and Find Full Text PDF

Limit-cycle oscillators are used to model a broad range of periodic nonlinear phenomena. Using the optically injected semiconductor laser as a paradigmatic example, we demonstrate that at specific operating points, the period-one oscillation frequency is simultaneously insensitive to multiple perturbation sources. In our system these include the temperature fluctuations experienced by the master and slave lasers as well as fluctuations in the bias current applied to the slave laser.

View Article and Find Full Text PDF

We demonstrate unprecedented agreement between a theoretical two-dimensional bifurcation diagram and the corresponding experimental stability map of an optically injected semiconductor laser over a large range of relevant injection parameter values. The bifurcation diagram encompasses both local and global bifurcations mapping out regions of regular, chaotic, and multistable behavior in considerable detail. This demonstrates the power of dynamical systems modeling for the quantitative prediction of nonlinear dynamics and chaos of semiconductor lasers.

View Article and Find Full Text PDF