Sports related head injuries can cause transient neurological events including loss of consciousness and dystonic posturing. However, it is unknown why head impacts that appear similar produce distinct neurological effects. The biomechanical effect of impacts can be estimated using computational models of strain within the brain.
View Article and Find Full Text PDFBackground: Surface translations are a method of perturbing an individual's balance to evoke balance control responses. However, the force plates used to measure kinetic responses often contain artifacts due to inertial properties coupled with the dynamics of surface translation perturbations. Techniques to attenuate these movement artifacts are not well established within the literature.
View Article and Find Full Text PDFAs awareness on the short-term and long-term consequences of sports-related concussions and repetitive head impacts continues to grow, so too does the necessity to establish biomechanical measures of risk that inform public policy and risk mitigation strategies. A more precise exposure metric is central to establishing relationships among the traumatic experience, risk, and ultimately clinical outcomes. Accurate exposure metrics provide a means to support evidence-informed decisions accelerating public policy mandating brain trauma management through sport modification and safer play.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
July 2020
Compared to adults, it has been documented that children are at elevated risk for concussion, repeated concussions, and experience longer recovery times. What is unknown, is whether the developing brain may be injured at differing strain levels. This study examined peak and cumulative brain strain from 20 cases of concussion in both young children and adults using physical reconstructions and finite element modelling of the brain response to impacts.
View Article and Find Full Text PDFReconstruction of real-life events can be used to investigate the relationship between the mechanical parameters of the impact and concussion risk. Striking mass has typically been approximated as being the mass of the body part coming into contact with the head without accounting for the force applied by the striking athlete. Thus, the purpose of this study was to measure the effective impact mass of three common striking techniques in ice hockey.
View Article and Find Full Text PDFObjective: Like many sports involving high speeds and body contact, head injuries are a concern for short track speed skating athletes and coaches. While the mandatory use of helmets has managed to nearly eliminate catastrophic head injuries such as skull fractures and cerebral haemorrhages, they may not be as effective at reducing the risk of a concussion. The purpose of this study was to evaluate the performance characteristics of speed skating helmets with respect to managing peak linear and peak rotational acceleration, and to compare their performance against other types of helmets commonly worn within the speed skating sport.
View Article and Find Full Text PDF