Chem Res Toxicol
September 2024
The oxidation of proteins and, in particular, of tryptophan (Trp) residues leads to chemical modifications that can affect the structure and function. The oxidative damage to proteins in photochemical processes is relevant in the skin and eyes and is related to a series of pathologies triggered by exposure to electromagnetic radiation. In this work, we studied the photosensitized formation of -formylkynurenine (NFKyn) from Trp in different reaction systems.
View Article and Find Full Text PDFA polymeric photosensitizer was synthesized through covalent attachment of the natural photosensitizer 6-carboxypterin (Cap) to a poly(allylamine hydrochloride) (PAH) polymer. The optimization of the functionalization steps and purification procedure is described. The overall yield of the functionalization reaction was 67% to generate the modified polymer (PAH-Cap), featuring a Cap substitution degree of approximately 1% and advantageous spectroscopic properties.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
June 2023
A new decyl chain [-(CH)CH] riboflavin conjugate has been synthesized and investigated. A nucleophilic substitution (S2) reaction was used for coupling the alkyl chain to riboflavin (Rf), a model natural photosensitizer. As expected, the alkylated compound (decyl-Rf) is significantly more lipophilic than its precursor and efficiently intercalates within phospholipid bilayers, increasing its fluorescence quantum yield.
View Article and Find Full Text PDFThe physical properties of lipid membranes depend on their lipid composition. Photosensitized singlet oxygen (O) provides a handle to spatiotemporally control the generation of lipid hydroperoxides via the reaction, enabling fundamental studies on membrane dynamics in response to chemical composition changes. Critical to relating the physical properties of the lipid membrane to hydroperoxide formation is the availability of a sensitive reporter to quantify the arrival of O.
View Article and Find Full Text PDFThe interaction of light with natural matter leads to a plethora of photosensitized reactions. These reactions cause the degradation of biomolecules, such as DNA, lipids, proteins, being therefore detrimental to the living organisms, or they can also be beneficial by allowing the treatment of several diseases by photomedicine. Based on the molecular mechanistic understanding of the photosensitization reactions, we propose to classify them in four processes: oxygen-dependent (type I and type II processes) and oxygen-independent [triplet-triplet energy transfer (TTET) and photoadduct formation].
View Article and Find Full Text PDFHere, we provide mechanistic insight to the photocleavage of a compound in the folate family, namely pteroic acid. A bis-decyl chain derivative of pteroic acid was synthesized, structurally characterized and photochemically investigated. We showed that, like folic acid, pteroic acid and the decylated derivative undergo a photocleavage reaction in the presence of H O, while no reaction was observed in methanol solution.
View Article and Find Full Text PDFPhotochem Photobiol Sci
September 2022
Photoallergy is a photosensitivity disorder associated with a modified ability of the skin to react to the combined effect of drugs and sunlight. It has been attributed to the covalent conjugation of proteins with a photosensitizer, yielding modified macromolecules that can act as antigen provoking the immune system response. The potential role of some endogenous compounds as photoallergens has not been fully established.
View Article and Find Full Text PDFIn electron-transfer initiated photosensitization processes, molecular oxygen (O ) is not involved in the first bimolecular event, but almost always participates in subsequent steps giving rise to oxygenated products. An exception to this general behavior is the photosensitized dimerization of tyrosine (Tyr), where O does not participate as a reactant in any step of the pathway yielding Tyr dimers (Tyr ). In the pterin (Ptr) photosensitized oxidation of Tyr, O does not directly participate in the formation of Tyr and quenches the triplet excited state of Ptr, the reactive species that initiates the process.
View Article and Find Full Text PDFThe treatment of a polymer surface using an atmospheric pressure plasma jet (APPJ) causes a local increase of the surface free energy (SFE). The plasma-treated zone can be visualized with the use of a test ink and quantitatively evaluated. However, the inked area is shrinking with time.
View Article and Find Full Text PDFPterin (Ptr) is a model photosensitizer that acts mainly through type I mechanism and is able to photoinduce the one-electron oxidation of purine and pyrimidine nucleobases. However, under anaerobic conditions Ptr reacts with thymine (T) to form photoadducts (Ptr-T) but does not lead to the photodegradation of guanine (G), which is the nucleobase with the lowest ionization potential. Accordingly, G is thermodynamically able to reduce the radicals of the other nucleobases and has been described in this sense as the "hole sink" of the DNA double helix.
View Article and Find Full Text PDFPhotochem Photobiol
November 2021
Photosensitization reactions have been demonstrated to be largely responsible for the deleterious biological effects of UV and visible radiation, as well as for the curative actions of photomedicine. A large number of endogenous and exogenous photosensitizers, biological targets and mechanisms have been reported in the past few decades. Evolving from the original definitions of the type I and type II photosensitized oxidations, we now provide physicochemical frameworks, classifications and key examples of these mechanisms in order to organize, interpret and understand the vast information available in the literature and the new reports, which are in vigorous growth.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2021
The tuning of surface properties through functionalization is an important field of research with a broad spectrum of applications. Self-assembled monolayers (SAMs) allow the surface tailoring through the adsorption of molecular layers having the appropriate functional group or precursor group enabling in situ chemical reactions and thus to the incorporation of new functionalities. The latter approach is particularly advantageous when the incorporation of huge groups is needed.
View Article and Find Full Text PDFα-Hemolysin (HlyA) is an extracellular protein toxin secreted by uropathogenic strains of that inserts into membranes of eukaryotic cells. The main goal of this work was to investigate the involvement of tryptophan (W) residues in the hemolytic activity of HlyA. We investigated the hemolytic activity of six single-point mutant proteins, in which one of the four Ws was replaced by cysteine (C) or leucine (L).
View Article and Find Full Text PDFMethionine (Met) is an essential sulfur-containing amino acid, sensitive to oxidation. The oxidation of Met can occur by numerous pathways, including enzymatic modifications and oxidative stress, being able to cause relevant alterations in protein functionality. Under UV radiation, Met may be oxidized by direct absorption (below 250Â nm) or by photosensitized reactions.
View Article and Find Full Text PDFMono- and bis-decylated lumazines have been synthesized and characterized. Namely, mono-decyl chain [1-decylpteridine-2,4(1,3H)-dione] 6a and bis-decyl chain [1,3-didecylpteridine-2,4(1,3H)-dione] 7a conjugates were synthesized by nucleophilic substitution (S 2) reactions of lumazine with 1-iododecane in N,N-dimethylformamide (DMF) solvent. Decyl chain coupling occurred at the N site and then the N site in a sequential manner, without DMF condensation.
View Article and Find Full Text PDFThe control of multidrug-resistant (MDR) bacteria is a growing public health problem, and new strategies are urgently needed for the control of the infections caused by these microorganisms. Notoriously, some MDR microorganisms generate complex structures or biofilms, which adhere to surfaces and confer extraordinary resistance properties that are fundamental challenges to control infections. One of the promising strategies for the control of MDR bacteria is antimicrobial photodynamic therapy (aPDT), which takes advantage of suitable photosensitizers (PS), oxygen and radiation to eradicate microorganisms by the generation of highly reactive species, including reactive oxygen species (ROS) that cause cytotoxic damage and cell death.
View Article and Find Full Text PDFThe main goal of the present work was to investigate the damages photoinduced by pterin (Ptr), an endogenous photosensitizer present in human skin under pathological conditions, on a globular protein such as ubiquitin (Ub). Particular attention has been paid on the formation of covalent adducts between Ptr and the protein that can behave as photoantigen and provoke an immune system response. Here, a multifaceted approach including UV-visible spectrophotometry, fluorescence spectroscopy, electrophoresis, size exclusion chromatography, and mass spectrometry is used to establish the Ub changes triggered by UV-A irradiation in the presence of Ptr.
View Article and Find Full Text PDFOver the past few years, the interest in Resveratrol (3,4',5,-trihydroxystilbene, RSV) has increased due to the evidence found of its antioxidant action that protects biomolecules and cells from oxidative damage. The interest has been further exacerbated by the natural presence of RSV in some fruits and derivatives, especially in red wine. In this paper we present evidence of RSV capacity in protecting a deoxynucleotide, an essential constituent of DNA, from one-electron oxidation.
View Article and Find Full Text PDFA polymeric photosensitizer based on poly(allylamine hydrochloride) (PAH) and rose Bengal (RB) was synthesized. The modified polycation PAH-RB was demonstrated to be suitable for construction of microcapsules a layer-by-layer (LbL) assembly technique, using sodium poly(styrene sulfonate) (PSS) as counter-polyelectrolyte and CaCO microcrystals as templates. After CaCO core removal, a stable suspension of hollow microcapsules with shells incorporating RB (HM-RB) was obtained.
View Article and Find Full Text PDFThe tyrosine dimer (Tyr2), a covalent bond between two tyrosines (Tyr), is one of the most important modifications of the oxidative damage of proteins. This compound is increasingly used as a marker of aging, stress and pathogenesis. At physiological pH, Tyr2 is able to absorb radiation at wavelengths significantly present in the solar radiation and artificial sources of light.
View Article and Find Full Text PDFIn order to develop a new long alkane chain pterin that leaves the pterin core largely unperturbed, we synthesized and photochemically characterized decyl pterin-6-carboxyl ester (CapC) that preserves the pterin amide group. CapC contains a decyl-chain at the carboxylic acid position and a condensed DMF molecule at the N2 position. Occupation of the long alkane chain on the pendent carboxylic acid group retains the acid-base equilibrium of the pterin headgroup due to its somewhat remote location.
View Article and Find Full Text PDFPterins are natural products that can photosensitize the oxidation of DNA, proteins, and phospholipids. Recently, a new series of decyl-chain (i.e.
View Article and Find Full Text PDFUnconjugated oxidized pterins accumulate in the skin of patients suffering from vitiligo and, under UVA irradiation, photosensitize the oxidation of amino acids. In this work, we study the interaction of the singlet and triplet excited states of pterin (Ptr), the parent compound of oxidized pterins, with four oxidizable amino acids: tryptophan (Trp), tyrosine (Tyr), histidine (His) and methionine (Met). Steady-state and time-resolved fluorescence measurements and laser flash photolysis experiments were performed to investigate the quenching of the Ptr excited states by the amino acids in aqueous solution.
View Article and Find Full Text PDF