Publications by authors named "Thomas Alderson"

Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, hold significant implications for cognition. However, connectome dynamics at fast (>1 Hz) timescales highly relevant to cognition are poorly understood due to the dominance of inherently slow fMRI in connectome studies. Here, we investigated the behavioral significance of rapid electrophysiological connectome dynamics using source-localized EEG connectomes during resting state ( = 926, 473 females).

View Article and Find Full Text PDF

Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood.

View Article and Find Full Text PDF

Pessoa's precis "The Entangled Brain" is a call to action. The larger concepts resonate with existing complex systems frameworks in general and in neuroscience in particular, especially in the fields of connectomics and criticality (Cocchi, Gollo, Zalesky, & Breakspear, 2017; Bassett & Gazzaniga, 2011). What is provocative from our perspective is that despite recognizing the brain as a complex system, the experimental approaches adopted by our community largely fail to align with this recognition.

View Article and Find Full Text PDF

The brain's functional connectome is dynamic, constantly reconfiguring in an individual-specific manner. However, which characteristics of such reconfigurations are subject to genetic effects, and to what extent, is largely unknown. Here, we identified heritable dynamic features, quantified their heritability, and determined their association with cognitive phenotypes.

View Article and Find Full Text PDF

Despite resting state networks being associated with a variety of cognitive abilities, it remains unclear how these local areas act in concert to express particular cognitive operations. Theoretical and empirical accounts indicate that large-scale resting state networks reconcile dual tendencies towards integration and segregation by operating in a metastable regime of their coordination dynamics. Metastability may confer important behavioural qualities by binding distributed local areas into large-scale neurocognitive networks.

View Article and Find Full Text PDF

Current theory suggests brain regions interact to reconcile the competing demands of integration and segregation by leveraging metastable dynamics. An emerging consensus recognises the importance of metastability in healthy neural dynamics where the transition between network states over time is dependent upon the structural connectivity between brain regions. In Alzheimer's disease (AD) - the most common form of dementia - these couplings are progressively weakened, metastability of neural dynamics are reduced and cognitive ability is impaired.

View Article and Find Full Text PDF

Alzheimer's disease (AD) and its prodromal state amnestic mild cognitive impairment (aMCI) are characterized by widespread abnormalities in inter-areal white matter fiber pathways and parallel disruption of default mode network (DMN) resting state functional and effective connectivity. In healthy subjects, DMN and task positive network interaction are modulated by the thalamus suggesting that abnormal task-based DMN deactivation in aMCI may be a consequence of impaired thalamo-cortical white matter circuitry. Thus, this article uses a multimodal approach to assess white matter integrity between thalamus and DMN components and associated effective connectivity in healthy controls (HCs) relative to aMCI patients.

View Article and Find Full Text PDF

Protein misfolding and aggregation are pathological events that place a significant amount of stress on the maintenance of protein homeostasis (proteostasis). For prevention and repair of protein misfolding and aggregation, cells are equipped with robust mechanisms that mainly rely on molecular chaperones. Two classes of molecular chaperones, heat shock protein 70 kDa (Hsp70) and Hsp40, recognize and bind to misfolded proteins, preventing their toxic biomolecular aggregation and enabling refolding or targeted degradation.

View Article and Find Full Text PDF