Publications by authors named "Thomas A Vilgis"

The properties and arrangement of surface-active molecules at air-water interfaces influence foam stability and bubble shape. Such multiscale-relationships necessitate a well-conducted analysis of mesoscopic foam properties. We introduce a novel automated and precise method to characterize bubble growth, size distribution and shape based on image analysis and using the machine learning algorithm Cellpose.

View Article and Find Full Text PDF

Jellyfish as a potential sustainable food material has recently gained increasing interest. However, with their soft gel-like texture and easy spoilage, it remains challenging to achieve desirable edible structures from jellyfish. The culinary preparation of jellyfish is a complex process and extends beyond conventional cooking methods.

View Article and Find Full Text PDF

Fluid gels exhibit unique properties during oral processing and thus are well known in gastronomy as well as for use in dysphagia patients. Agarose fluid gels, which are produced by gelation under shear, in particular, show elastic solid-like behavior at rest but a fluid-like behavior once critical stress is exceeded. In a previous study this special behavior is addressed to the "hairy" structure of the microgel particles - dangling gel parts and chains on the particle surface - which plays a crucial role in the rheological, mechanical and tribological properties of the gels.

View Article and Find Full Text PDF

Paraffin wax is a mixture of numerous unbranched hydrocarbons used frequently for various purposes: to improve the shelf life of products containing lipid system and develop more shiny products. However, because of its complex nature, the effect of such molecular structure on the solid phase behavior of lipids is hardly unstated. Hence in our study, we focus on understanding the impact of derivatives of paraffin wax on the lipid system.

View Article and Find Full Text PDF

Agarose, a strongly gelling polysaccharide, is a common ingredient used to optimize the viscoelastic properties of a multitude of food products. Through aggregation of double helices via hydrogen bonds while cooling under quiescent conditions it forms firm and brittle gels. However, this behavior can be altered by manipulating the processing conditions shear.

View Article and Find Full Text PDF

A model gel of whey protein isolate (WPI) was prepared by cold gelation with calcium. This system was modified by the addition of free cysteine residues (Cys) at different steps of the process. The WPI cold-set gels obtained were then subjected to heat treatment at 90°C.

View Article and Find Full Text PDF

The comparative study between the mixing behavior of two binary mixtures of cocoa butter (CB)/tristearin (TS) and cocoa butter (CB)/coconut oil (CO) was investigated by using differential scanning calorimetry (DSC). The DSC profile for CB/TS blends resulted in a monotectic temperature-concentration (T-X) phase diagram, whereas a phase diagram of eutectic type was observed for CB/CO blends at 65 wt % of CO and 35 wt % CB; this suggests that the eutectic crystal can be formed when the saturated fat (blue = CO) is smaller in size compared to monounsaturated fat (orange = CB), whereas, for similar and larger size (red = TS) to CB, phase separation under crystallization is likely to occur (as shown in the graphical abstract). In order to understand the interaction between the binary systems, the profile of the phase diagram was fitted with Bragg-Williams approximation for estimation of the nonideality mixing parameter.

View Article and Find Full Text PDF

The main aim of this research is to investigate the characteristics of milk and milk proteins as natural emulsifiers. It is still largely unclear how the two main fractions of the milk proteins behave as emulsifier in highly concentrated emulsions. The surface-active effect of these is determined experimentally for emulsions with a high oil content (φ > 0.

View Article and Find Full Text PDF

Hypothesis: Oleosomes are stabilized by a complex outer phospholipid-protein-layer. To improve understanding of its structure and stabilization mechanism, this shell has to be studied in extracellular native conditions. This should be possible by SANS using contrast variation.

View Article and Find Full Text PDF

Plant oleosomes are uniquely emulsified lipid reservoirs that serve as the primary energy source during seed germination. These oil bodies undergo significant changes regarding their size, composition and structure during normal seedling development; however, a detailed characterization of these oil body dynamics, which critically affect oil body extractability and nutritional value, has remained challenging because of a limited ability to monitor oil body location and composition during germination in situ Here, we demonstrate via in situ, label-free imaging that oil bodies are highly dynamic intracellular organelles that are morphologically and biochemically remodelled extensively during germination. Label-free, coherent Raman microscopy (CRM) combined with bulk biochemical measurements revealed the temporal and spatial regulation of oil bodies in native soya bean cotyledons during the first eight days of germination.

View Article and Find Full Text PDF

This review discusses the (soft matter) physics of food. Although food is generally not considered as a typical model system for fundamental (soft matter) physics, a number of basic principles can be found in the interplay between the basic components of foods, water, oil/fat, proteins and carbohydrates. The review starts with the introduction and behavior of food-relevant molecules and discusses food-relevant properties and applications from their fundamental (multiscale) behavior.

View Article and Find Full Text PDF

Using large scale molecular dynamics simulations we investigate the static and dynamic properties of a linear polymer melt confined between two solid surfaces. One of the walls is repulsive and the other is attractive wall. The bottom attractive wall is characterized by different degrees of roughness which is tuned by an array of short perpendicular rigid pillars with variable grafting density.

View Article and Find Full Text PDF

Forced detachment of a single polymer chain, strongly adsorbed on a solid substrate, is investigated by two complementary methods: a coarse-grained analytical dynamical model, based on the Onsager stochastic equation, and Molecular Dynamics (MD) simulations with a Langevin thermostat. The suggested approach makes it possible to go beyond the limitations of the conventional Bell-Evans model. We observe a series of characteristic force spikes when the pulling force is measured against the cantilever displacement during detachment at constant velocity vc (displacement control mode) and find that the average magnitude of this force increases as vc increases.

View Article and Find Full Text PDF

The combination of different gelling and nongelling hydrocolloids is known to yield complex systems with a wide range of mechanical properties. Here, the influence of the nongelling hydrocolloids sodium-alginate and xanthan on the gelation of agarose is investigated. The two polyelectrolytes differ significantly in their flexibility, leading to opposing effects on the thermomechanical properties of the resulting composite gels.

View Article and Find Full Text PDF

Lipid storage in plants is achieved among all plant species by formation of oleosomes, enclosing oil (triacylglycerides) in small subcellular droplets. Seeds are rich in this pre-emulsified oil to provide a sufficient energy reservoir for growing. The triacylglyceride core of the oleosomes is surrounded by a phospholipid monolayer containing densely packed proteins called oleosins.

View Article and Find Full Text PDF

In the present study, the influence of moisture content, temperature and time during heat treatment of wheat flour was investigated. Heat treatment was carried out on laboratory scale in a water bath at 50-90 degrees C for times up to 3 h. Flour functionality was evaluated by analysing protein solubility in acetic acid as well as by the formation of bread-like doughs, which were then analysed with dynamic oscillatory and rotational rheometry.

View Article and Find Full Text PDF

Using a molecular dynamics simulation, we study the thermo-mechanical behavior of a model hydrogel subject to deformation and change in temperature. The model is found to describe qualitatively poly-lactide-glycolide hydrogels in which acrylic acid (AA)-groups are believed to play the role of quasi-mobile nodes in the formation of a network. From our extensive analysis of the structure, formation, and disintegration of the AA-groups, we are able to elucidate the relationship between structure and viscous-elastic behavior of the model hydrogel.

View Article and Find Full Text PDF

Soy milk is a highly stable emulsion mainly due to the presence of oleosomes, which are oil bodies and function as lipid storage organelles in plants, e.g., in seeds.

View Article and Find Full Text PDF

Soy milk is a highly stable emulsion, the stability being mainly due to the presence of oleosomes or oil bodies, spherical structures filled with triacylglycerides (TAGs) and surrounded by a monolayer of phospholipids and proteins called oleosins. For oleosomes purified from raw soymilk, surface pressure investigations and Brewster angle microscopy have been performed to unveil their adsorption, rupture and structural changes over time at different subphase conditions (pH, ionic strength). Such investigations are important for (industrial) food applications of oleosomes, but are also useful for the understanding of the general behavior of proteins and phospholipids at interfaces.

View Article and Find Full Text PDF

We investigate the translocation dynamics of a polymer chain threaded through a membrane nanopore by a chemical potential gradient that acts on the chain segments inside the pore. By means of diverse methods (scaling theory, fractional calculus, and Monte Carlo and molecular dynamics simulations), we demonstrate that the relevant dynamic variable, the transported number of polymer segments, s(t), displays an anomalous diffusive behavior, both with and without an external driving force being present. We show that in the absence of drag force the time tau, needed for a macromolecule of length N to thread from the cis into the trans side of a cell membrane, scales as tauN(2/alpha) with the chain length.

View Article and Find Full Text PDF

The electrostatics and density correlations of dipolar solvent molecules in weakly charged polyelectrolyte solutions and charged gels are studied using a field-theoretical approach. For miscible dipolar solvent mixtures, an exact expression for the effective dielectric permittivity is obtained on the mean-field level, which depends upon the individual volume of each solvent species before mixing and the final volume of the mixture. If the effect of volume change is small during mixing, the dielectric permittivity is approximately equal to the volume-averaged dielectric permittivity of the individual components of the dipolar solvent mixture.

View Article and Find Full Text PDF

In this work the dynamics of a chain consisting of a set of beads attached to the ends of segments of fixed lengths is investigated. The chain fluctuates at constant temperature in a viscous medium. For simplicity, all interactions among the beads have been switched off and the number of spatial dimensions has been limited to two.

View Article and Find Full Text PDF

In this paper we study from a nonperturbative point of view the entanglement of two directed polymers subjected to repulsive interactions given by a Dirac delta-function potential. An exact formula of the so-called second moment of the winding angle is derived. This result is used to provide a thorough analysis of entanglement phenomena in the classical system of two polymers subjected to repulsive interactions and related problems.

View Article and Find Full Text PDF

We investigate the localization of a hydrophobic-polar regular copolymer at a selective solvent-solvent interface with emphasis on the impact of block length M on the copolymer behavior. The considerations are based on simple scaling arguments and use the mapping of the problem onto a homopolymer adsorption problem. The resulting scaling relations treat the gyration radius of the copolymer chain perpendicular and parallel to the interface in terms of chain length N and block size M, as well as the selectivity parameter chi.

View Article and Find Full Text PDF

The dynamics of an ideal polymer ring enclosing a constant algebraic area is studied. The constraint of a constant area is found to couple the dynamics of the two Cartesian components of the position vector of the polymer ring through the Lagrange multiplier function which is time dependent. The time dependence of the Lagrange multiplier is evaluated in a closed form both at short and long times.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session8llf4uigemnijfl0pt2p596c6vgnsqip): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once