Publications by authors named "Thomas A Schmedake"

There is a growing demand for new fluorescent small molecule dyes for solid state applications in the photonics and optoelectronics industry. Thiazolo[5,4-]thiazole (TTz) is an organic heterocycle moiety which has previously shown remarkable properties as a conjugated polymer and in solution-based studies. For TTz-based small molecules to be incorporated in solid-state fluorescence-based optical devices, a thorough elucidation of their structure-photophysical properties needs to be established.

View Article and Find Full Text PDF

Organic-inorganic hybrid materials often face a stability challenge. β-ZnTe(en) , which uniquely has over 15-year real-time degradation data, is taken as a prototype structure to demonstrate an accelerated thermal aging method for assessing the intrinsic and ambient-condition long-term stability of hybrid materials. Micro-Raman spectroscopy is used to investigate the thermal degradation of β-ZnTe(en) in a protected condition and in air by monitoring the temperature dependences of the intrinsic and degradation-product Raman modes.

View Article and Find Full Text PDF

Solvatofluorochromic molecules provide strikingly high fluorescent outputs to monitor a wide range of biological, environmental, or materials-related sensing processes. Here, thiazolo[5,4-d]thiazole (TTz) fluorophores equipped with simple alkylamino and nitrophenyl substituents for solid-state, high-performance chemo-responsive sensing applications are reported. Nitroaromatic substituents are known to strongly quench dye fluorescence, however, the TTz core subtly modulates intramolecular charge transfer (ICT) enabling strong, locally excited-state fluorescence in non-polar conditions.

View Article and Find Full Text PDF

Complexes consisting of earth-abundant main group metals such as silicon with polypyridine ligands are of interest for a variety of optical and electronic applications including as electrochromic colorants. Previous spectroelectrochemical studies with tris(2,2'-bipyridyl)silicon(IV) hexafluorophosphate, [Si(bpy)](PF) demonstrated an ability to control the color saturation of the potential electrochromic dye, with the intensity of the dye's green color increasing as the charge state sequentially reduces from 4+ to 1+. In this study, the synthesis of bis(4'-(4-tolyl)-2,2':6',2″-terpyridine)silicon(IV) hexafluorophosphate, [Si(ttpy)](PF), is reported along with electrochemical and spectroelectrochemical analyses.

View Article and Find Full Text PDF

Organic-inorganic hybrids may offer material properties not available from their inorganic components. However, they are typically less stable and disordered. Long-term stability study of the hybrid materials, over the anticipated lifespan of a real-world electronic device, is practically nonexistent.

View Article and Find Full Text PDF

Microporous spirosilabifluorene networks were synthesized via Yamamoto coupling of tetrabromospirosilabifluorene precursors. They exhibit bright fluorescence that is quenched in the presence of nitroaromatics. The C/Si switch has subtle effects on the optical properties of the spirobifluorene network and provides a convenient route to 3,3',6,6'-coupled and other polybifluorenes.

View Article and Find Full Text PDF

A neutral hexacoordinate silicon complex containing two 2,6-bis(benzimidazol-2'-yl)pyridine (bzimpy) ligands has been synthesized and explored as a potential electron transport layer and electroluminescent layer in organic electronic devices. The air and water stable complex is fluorescent in solution with a λmax = 510 nm and a QY = 57%. Thin films grown via thermal evaporation also fluoresce and possess an average electron mobility of 6.

View Article and Find Full Text PDF

Tris(bipyridyl)silicon(iv) was electrochemically reduced in acetonitrile to obtain the UV-vis spectra of its reduced species. Three stable, reversible reduced states (3+, 2+, and 1+) were observed with distinct isosbestic points for each of the redox reactions. The fully oxidized state (4+) is colorless, while the reduced states were green.

View Article and Find Full Text PDF

Strategies to encode or label small particles or beads for use in high-throughput screening and bioassay applications focus on either spatially differentiated, on-chip arrays or random distributions of encoded beads. Attempts to encode large numbers of polymeric, metallic or glass beads in random arrays or in fluid suspension have used a variety of entities to provide coded elements (bits)--fluorescent molecules, molecules with specific vibrational signatures, quantum dots, or discrete metallic layers. Here we report a method for optically encoding micrometre-sized nanostructured particles of porous silicon.

View Article and Find Full Text PDF