Background: When developing a surrogate model of the human skull, there is a multitude of morphometric and geometric properties to consider when constructing the model. To simplify this approach, it is important to identify only the properties that have a significant influence on the mechanical response of the skull. The objective of this study was to identify which morphometric and geometric properties of the calvarium were significant predictors of mechanical response.
View Article and Find Full Text PDFThe circumstances in which we mechanically test and critically assess human calvarium tissue would find relevance under conditions encompassing real-world head impacts. These conditions include, among other variables, impact velocities, and strain rates. Compared to quasi-static loading on calvaria, there is less reporting on the impact loading of the calvaria and consequently, there are relatively fewer mechanical properties on calvaria at relevant impact loading rates available in the literature.
View Article and Find Full Text PDFIntroduction: The purpose of this study was to compare the rotational blunt impact performance of an anthropomorphic test device (ATD: male 50% Hybrid III head and neck) headform donning an Advanced Combat Helmet (ACH) between conditions in which the coefficient of static friction (μs) at the head-to-helmet pad interface varied.
Materials And Methods: Two ACHs (size large) were used in this study and friction was varied using polytetrafluoroethylene (PTFE), human hair, skullcap, and the native vinyl skin of the ATD. A condition in which hook and loop material adhered the headform to the liner system was also tested, resulting in a total of five conditions: PTFE, Human Hair, Skullcap, Vinyl, and Hook.
There is currently a gap in the literature that quantitatively describes the complex bone microarchitecture within the diploë (trabecular bone) and cortical layers of the human calvarium. The purpose of this study was to determine the morphometric properties of the diploë and cortical tables of the human calvarium in which key interacting factors of sex, location on the calvarium, and layers of the sandwich structure were considered. Micro-computed tomography (micro-CT) was utilized to capture images at 18 μm resolution of male (n = 26) and female (n = 24) embalmed calvarium specimens in the frontal and parietal regions (N = 50).
View Article and Find Full Text PDFReproduction of anthropomorphic test device (ATD) head impact test methods is a critical element needed to develop guidance and technologies that reduce the risk for brain injury in sport. However, there does not appear to be a consensus for reporting ATD pose and impact location for industry and researchers to follow. Thus, the purpose of this article is to explore the various methods used to report impact location and ATD head pose for sport-related head impact testing and provide recommendations for standardizing these descriptions.
View Article and Find Full Text PDF