Inspired by hook-and-loop fasteners, we designed a hydrogel network containing α-zirconium phosphate (ZrP) two-dimensional nanosheets with a high density of surface hydroxyl groups serving as nanopatches with numerous "hooks," while polymer chains with plentiful amine functional groups serve as "loops." Our multiscale molecular simulations confirm that both the high density of hydroxyl groups on nanosheets and the large number of amine functional groups on polymer chains are essential to achieve reversible interactions at the molecular scale, functioning as nano hook-and-loop fasteners to dissipate energy. As a result, the synthesized hydrogel possesses superior stretchability (>2100% strain), resilience to compression (>90% strain), and durability.
View Article and Find Full Text PDFWe have achieved reversible tunability of local surface plasmon resonance in conjugated polymer functionalized gold nanoparticles. This property was facilitated by the preparation of 3,4-ethylenedioxythiophene (EDOT) containing polynorbornene brushes on gold nanoparticles via surface-initiated ring-opening metathesis polymerization. Reversible tuning of the surface plasmon band was achieved by electrochemically switching the EDOT polymer between its reduced and oxidized states.
View Article and Find Full Text PDFWater-soluble CdSe nanocrystal/poly(allylamine) clusters with sizes ranging between 50 and 200 nm were prepared using 3-amino-1-propanol as a compatibilizing agent. Photoluminescence (PL) quantum yields (QY) up to 20% were achieved in water without the need to clad these CdSe nanocrystals (NCs) with higher band gap inorganic layers. The polymer-to-nanocrystal ratio plays an important role in the internal structure and stability of these polymer/NC clusters, as determined by static and dynamic light scattering in conjunction with PL studies.
View Article and Find Full Text PDFSiO(2) particles of various sizes were prepared and surface modified with biotin-chain-end-functionalized poly(ethylene glycol). Dispersions of these particles were prepared, and their aggregation was induced upon the addition of avidin. The aggregate size and growth rate were monitored by DLS analysis, and SEM and TEM images of freeze-dried samples of the aggregate solutions were used to confirm the DLS data and to image the aggregate size and dimension.
View Article and Find Full Text PDFNanoparticle hybrid materials consisting of a silica core surrounded by a poly(norbornene) brush have been prepared by ring opening metathesis polymerization (ROMP). A quantitative determination of each stage of composite formation has been accomplished, including a determination of the density of surface-bound functional groups, catalyst molecules, and polymer chains. This analysis has enabled the determination of the reaction efficiency between the catalyst and the surface-bound functional groups as well as the determination of the fraction of metal-mediating species that initiate a polymer chain.
View Article and Find Full Text PDF